NFCR MISSION STATEMENT

The National Foundation for Cancer Research (NFCR) was founded in 1973 to support cancer research and public education relating to prevention, early diagnosis, better treatments and ultimately, a cure for cancer. NFCR promotes and facilitates collaboration among scientists to accelerate the pace of discovery from bench to bedside. NFCR is about Research for a Cure — cures for all types of cancer.

TABLE OF CONTENTS

Letter from the Chief Executive Officer 1
NFCR Donor-Initiated Fund Supports Research to Find New Ways to Treat Drug Resistant Cancers. 2–3
Research Highlights of NFCR Funded Scientists 4–14
Reason for Hope: GBM AGILE 14–15
2015 Szent-Györgyi Prize 16–17
2015 Fundraising Events .. 18–19
Expansion of the Scientific Advisory Board of NFCR 20
Catalyst for Discovery ... 21
Report of Independent Auditors 22
NFCR 2015 Financial Statements 23–24
RESEARCH CURES CANCER

Dear Friends,

Whether described as a War on Cancer, a Moonshot, or a Thousand Points of Light, it’s going to be RESEARCH that cures cancer. In 2012, Dr. Ron DePinho, President of the MD Anderson Cancer Center in Houston, made this point when launching the MD Anderson Moonshots Program. This visionary effort recognized that cancer research is seeing “a confluence of game-changing technological advances that allow us to understand the fundamental underpinnings of this disease.”

In November, NFCR expanded this visionary effort to global dimensions. NFCR President, Dr. Sujuan Ba, joined former NCI Deputy Director, Dr. Anna Barker, to launch a groundbreaking global alliance against glioblastoma multiforme, a deadly form of brain cancer. NFCR is playing a key role in this multinational adaptive trial for glioblastoma multiforme, GBM AGILE, a game changer that holds new promise for rapid testing of anti-cancer drugs and their combinations.

NFCR is about research and working together. As a catalyst for the kinds of “disruptive innovations” that are accelerating the development of successful new approaches to treating cancer — all types of cancer — NFCR is prioritizing the connections between basic cancer research and translating discoveries being made in the laboratory into new treatments for cancer patients. NFCR is giving reason to hope in the progress being made against cancer. As you will read in the following pages, these are cures being delivered — new treatments being brought into the clinic where patients are being saved. This is what NFCR means by Research for a Cure.

Sincerely yours,

Franklin C. Salisbury, Jr.
Chief Executive Officer
A team of researchers led by Alice Tsang Shaw, M.D., Ph.D., Harvard Professor and a thoracic oncologist at Massachusetts General Hospital, has developed a new platform that can rapidly identify effective drug combinations for lung cancer patients whose tumors have stopped responding to treatment. Alice Shaw’s NFCR-funded research is a critical milestone on the road to precision medicine.
In recent years, scientists have identified distinct molecular characteristics in some forms of non-small cell lung cancer (NSCLC) which has led to the development of targeted therapies. While cancer treatments that target specific genetic mutations driving tumor growth have shown promising results, their response is often short-lived. Tumors acquire new mutations and activate so-called “escape pathways” rendering them resistant to these targeted cancer therapies. Complicating matters, the mechanism of resistance varies from patient to patient.

If we could understand what makes tumors become resistant, we can design drug combinations that not only attack the existing form of the cancer, but also target the mutations and cut off the escape routes.

Now, thanks to NFCR-funded research by Dr. Shaw, a new and better way to treat resistant cancers is emerging. Her discovery of multiple resistance mechanisms developing simultaneously provided the rationale for pursuing combinatorial therapeutics tailored to the precise resistance mechanisms in patients who relapse on targeted cancer therapies. By successfully identifying drug combinations that halted the growth of resistant cells in tumor models, she has created hope for the future. Pharmacological profiling of patient-derived cells could be an efficient way to direct therapeutic choices for individual cancer patients.

Dr. Shaw’s research will hopefully lead to development of effective therapeutic strategies for patients with ALK-positive NSCLC (mutations in the ALK gene) which could be clinically tested within 1 to 2 years. This platform to rapidly identify and validate individualized treatment approaches gives hope to lung cancer patients and patients with many other types of cancer.

Dr. Shaw’s research is supported through the Hillsberg Lung Cancer Translational Research Grant, a donor-initiated fund established in 2013 by two generous NFCR donors, Sanford and Penny Hillsberg. The goal of this research grant is to develop approaches that effectively address key issues of drug resistance to lung cancer treatment, in ways that can be quickly translated into clinical applications that bring direct clinical benefits to lung cancer patients. Mr. and Mrs. Hillsberg hope their support will help accelerate translational research in this critical field.

“We are so happy to be part of this important research effort,” said Mr. Hillsberg. “We have worked with NFCR for years, and we know their excellent track record of supporting high-quality science. That’s why we were excited to participate in their donor-initiated research model, which matched our interest in translational lung cancer research with some of the best scientists in the world. We know these efforts will benefit patients fighting lung cancer research with some of the best scientists in the world. We know these efforts will benefit patients fighting cancer, and we are fully committed to continuing our support of Dr. Shaw and the other great projects at NFCR.”

From donor-initiated research projects to grassroots support, NFCR is grateful for all those who join us in our mission — to advance the critical research that will bring a cure for cancer — all types of cancer.
For more than 40 years, NFCR has provided outstanding researchers with the vital seed funding they need to pursue the next advancement in cancer research. NFCR is committed to fostering scientific creativity, investing in basic research, and helping scientists translate these promising cancer discoveries into cures.

From life-saving breakthroughs in immunotherapy to advances in metastasis research, cancer genetics, precision medicine, anti-angiogenic therapies, nanomedicine and more, NFCR scientists have led the way into a new era of cancer prevention, detection, and treatment.

This is what NFCR means by *Research* for a *Cure.*
Laurence J.N. Cooper, M.D., Ph.D.
MD Anderson Cancer Center, Houston, TX
Research Focus: Novel T-cell Immunotherapy

Dr. Cooper is pioneering the development of a new forward-thinking technology which genetically engineers human immune cells for the treatment of certain types of leukemia and lymphoma. In recent years, convincing clinical data has emerged to demonstrate that this novel immunotherapy holds great promise to offer a new, safe and effective way to treat patients with leukemia and lymphoma which has stopped responding to all other therapies. This promising new treatment has progressed into the next round of clinical trials. With NFCR's funding, Dr. Cooper continues to move forward towards his goal — to develop an “off-the-shelf” therapy in which the engineered immune cells can be pre-assembled and frozen in large quantities and simply thawed and infused “on demand.” Interestingly, Dr. Cooper's innovative genetic engineering approach reduces the need to “match” donors with patients, allowing the immune cells prepared from a single donor to be used in multiple recipients. This new approach is a paradigm shift, which allows prompt delivery of a safe and effective new immunotherapy to patients in need without delay.

Wayne Marasco, M.D., Ph.D.
NFCR Center for Therapeutic Antibody Engineering, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
Research Focus: Monoclonal Antibody Engineering

One promising approach to treating cancer is monoclonal antibody therapy — a type of immunotherapy in which specialized proteins called antibodies attach to specific structures on the surface of cancer cells, then alert the patient’s own immune cells to attack the cancer. Designing the antibodies for this type of therapy is a challenging feat of molecular engineering — one ably met by Dr. Marasco and his team at the NFCR Center for Therapeutic Antibody Engineering. Dr. Marasco has had great success developing antibodies that attach to carbonic anhydrase IX (CAIX), an important protein expressed in renal cell carcinoma — the most common type of kidney cancer — and recently reported in cancers of the mouth and lungs as well. For Dr. Marasco, the ultimate goal is always to translate his findings into new drugs for patients.

Paul Fisher, M.Ph., Ph.D.
Virginia Commonwealth University School of Medicine, Richmond, VA
Research Focus: Cancer Terminator Viruses

Dr. Fisher has developed a new therapeutic approach to cancer therapy, which he calls a Cancer Terminator Virus. The agent, which is a virus genetically reprogrammed to infect and destroy tumor cells while leaving normal cells alone, is used to treat both early stage and metastatic prostate cancer, and recently expanded to treatment of pancreatic cancer as well. Dr. Fisher has also developed the first sensitive and specific imaging agent for bone metastases — the number one cause of death for patients with prostate cancer. The new molecular imaging technique detects cells that express a gene called AEG-1, which was originally discovered by Dr. Fisher. It is expressed at high levels in all cancer types investigated so far, with limited expression in normal tissue. This represents a great improvement over current clinical imaging techniques, and could lead to earlier detection and treatment of metastases — not only originating from prostate cancer, but from several other cancer types as well.
Danny Welch, Ph.D.
NFCR Center for Metastasis Research
The University of Kansas Cancer Center, Kansas City, KS
Research Focus: Cancer Metastasis

Since its inception, Dr. Welch has directed the NFCR Center for Metastasis Research in its investigations of cancer biology related to metastasis — the process responsible for the vast majority of patient deaths across all types of cancer. Dr. Welch and his team have identified genes regulating metastasis, particularly metastasis suppressors; investigated the interactions between metastases and their surrounding tissues, especially for bone metastases; and are now working to translate their findings into clinical practice. Through research, they identified genetic changes that predict whether patients will or will not develop metastasis. At least some of these changes occur in mitochondria — where cells convert nutrients into energy. These results could determine that a simple blood draw and analysis of mitochondrial DNA, which is present in every cell and which is small enough to be rapidly analyzed, could be used to help doctors guide their strategy to treat patients.

Daniel A. Haber, M.D., Ph.D.
Massachusetts General Hospital Cancer Center, Boston, MA
Research Focus: Circulating Tumor Cells

Dr. Haber and his team developed the CTC iChip — an advanced micro-engineered device that is capable of capturing extremely rare circulating tumor cells (CTCs) from the blood. This device could dramatically improve treatment and diagnosis of many different types of metastatic cancer. Thanks to recent improvements in design, Dr. Haber is now able to use the CTC iChip to investigate the ways in which cancer cells leave the primary tumor and invade into the bloodstream to spread and initiate metastasis. By testing the CTCs, they have discovered that some genes are specifically activated as cancer cells leave the tumor and enter blood circulation. He and his team are now learning about the properties of these genes to better understand how cancer cells spread through the blood, and whether targeting these genes could prevent metastasis.
OVERCOMING DRUG RESISTANCE

Susan Band Horwitz, Ph.D.
Albert Einstein College of Medicine, New York, NY
Research Focus: Natural Product-derived Anti-cancer Drugs and Drug Resistance

Dr. Horwitz is a world-renowned cancer researcher, whose work has been instrumental in the development of a successful class of anti-cancer drugs called Microtubule-Stabilizing Agents (MSAs) — a class that includes Taxol®, a natural product-derived drug used extensively in the treatment of breast cancer and other types of cancer worldwide. Taxol is effective for many breast cancer patients, but some patients will become resistant to it. Dr. Horwitz is collaborating with other scientists to develop new drugs to overcome the drug resistance problem. The new drugs are hybrid molecules containing the active segments of Taxol and another drug called discodermolide. These hybrid molecules will have increased affinity to the cancer targets and reduced risk of drug resistance. Two candidate molecules have been identified and tested in a panel of breast cancer cell lines. The results were very promising, and the candidate molecules will be further tested to evaluate their efficacy and toxicity on more complex tumor models. With more positive results, the candidate molecules could move to the clinical trial stage.

Jin Jen, M.D., Ph.D.
Mayo Clinic, Rochester, MN
Research Focus: Fighting Drug Resistance in ALK+ Lung Cancer

Dr. Jen and her team are developing a platform for fighting drug resistance in ALK-positive (ALK+) lung cancer. In an exciting project supported through NFCR’s Hillsberg Lung Cancer Translational Research Grant, Dr. Jen is performing advanced genomic analysis on tumor biopsies collected from ALK+ lung cancer patients whose cancer has recurred because of drug resistance. She also established tumor models derived from the same patients’ biopsies. By integrating the genetic, clinical, and patient-specific tumor model data, Dr. Jen’s research will help doctors choose the best possible drug for each specific patient in the project.
ANGIOGENESIS

Harold F. Dvorak, M.D.
Beth Israel Deaconess Medical Center, Boston, MA
Research Focus: Tumor Angiogenesis and Anti-vascular Therapy

Dr. Dvorak is a long-time NFCR Fellow, and winner of the inaugural Albert Szent-Györgyi Prize for his discovery of VEGF (vascular endothelial growth factor). VEGF plays a central role in angiogenesis, the process by which tumors recruit blood vessels to supply the nutrients they need to grow and survive. Dr. Dvorak’s research has contributed immensely to scientists’ understanding of this process, and led to the development of a new class of anti-angiogenic therapies that target tumor blood vessels. His latest work is focused on tumor’s “feeding arteries” and “draining veins” — the larger vessels that carry blood into and out of tumors — with the goal of determining how they form and whether they can be targeted to cut off the tumor blood supply. This novel approach, which is analogous to cutting off the water supply from the street, rather than turning off all the faucets in the house, has great potential for more effectively treating many types of cancer.

Rakesh K. Jain, Ph.D.
Massachusetts General Hospital, Boston, MA
Research Focus: Attacking Brain Tumor Blood Vessels

Dr. Jain is a leader in the field of anti-angiogenic therapy. His seminal research demonstrated that anti-angiogenic therapy works by normalizing the abnormal, leaky vessels that usually surround and penetrate tumors. This process both improves delivery of chemotherapy drugs and increases the oxygen content of cancer cells, making radiation therapy more effective. Dr. Jain is now focused on the role of angiogenesis in glioblastoma multiforme (GBM). By identifying the characteristics that confer resistance to anti-angiogenic therapy in GBM patients, Dr. Jain’s research is helping doctors to better tailor the use of anti-angiogenic therapies for GBM patients in the clinics. Additionally, the molecular resistance pathways that Dr. Jain and his team identify will direct the development of novel agents targeting these pathways, which could extend the benefits of anti-angiogenic therapy for patients.
EARLY DETECTION

Robert C. Bast, Jr., M.D.
MD Anderson Cancer Center, Houston, TX
Research Focus: Early Detection of Ovarian Cancer

Early detection is considered the most effective means to achieve a cure in ovarian cancer. The five-year survival rate is above 90% if ovarian cancer is found during the earliest stage; unfortunately, only 15% of cases are diagnosed at this stage. Dr. Bast is working to change that, using a special imaging device called a Superconducting Quantum Interfering Device (SQUID), which promises to improve sensitivity by several orders of magnitude over existing techniques, such as CT, MRI and PET-CT. Dr. Bast and his colleagues are working to identify the best combination of biomarkers that can be used together to produce the most sensitive, ovarian-cancer-identifying signal possible. Using more specific and sensitive biomarkers in conjunction with SQUID technology could greatly increase early detection and diagnosis of ovarian tumors at a time that would offer the best opportunity for a cure.

James P. Basilion, Ph.D.
NFCR Center for Molecular Imaging
Case Western Reserve University, Cleveland, OH
Research Focus: Highly Sensitive Molecular Imaging for Early Detection of Cancers

Dr. Basilion and his team at the NFCR Center for Molecular Imaging are developing advanced new techniques that could change the way doctors look at cancer. Each tumor has a complex genetic signature, and a new molecular probe designed at the Center allows doctors to simultaneously visualize many different aspects of this signature in real-time — leading to better diagnoses and earlier detection of cancers. Dr. Basilion and scientists at the Center have also developed an imaging technique that could revolutionize cancer surgery, both for breast lumpectomy and skin cancer. The new technology consists of a light-emitting probe that binds to the cancer cells. It is many times more sensitive than existing probes and works within minutes, allowing surgeons to assess, in real time, whether the margins of their surgeries are cancer-free. This novel approach, which may soon advance to clinical trials, could dramatically reduce the re-excision rates (currently 20–60% for lumpectomy) and, more importantly, reduce or eliminate local recurrence due to “surgically missed” cancerous tissues.
Kathryn B. Horwitz, Ph.D.
University of Colorado, Denver, CO
Research Focus: Combination Therapy for Breast Cancer

A surprising number of estrogen and progesterone receptors positive (ER+PR+) breast cancer patients are resistant to hormone therapy. In fact, 30% or more see their tumor return after being “cancer-free” for years, even decades, following anti-hormone and chemotherapy treatments. Dr. Horwitz is working to understand why. Her research has found that luminal breast tumors, which account for 75% of all breast tumors, actually contain four different types of cancer cells, some of which are resistant to hormone therapy. It is as though the patient had four different kinds of breast cancer at once. Her team is working to isolate each of these four cell types, then find drugs that can attack each one, in hopes that combination therapy will prove to be a better long-term approach to treatment.

W. K. Alfred Yung, M.D.
MD Anderson Cancer Center, Houston, TX
Research Focus: Identifying New Targets for GBM

To advance the search for new treatments for glioblastoma multiforme (GBM), Dr. Yung and his team are especially focused on drugs that target a gene called *PI3K*, a key factor in about 30% of GBM cases. His team developed a special panel of cell lines made from glioma stem cells (GSCs) collected from many GBM patients. The cell lines allow them to investigate patterns of resistance to PI3K inhibitors. By establishing the molecular profile of these GSCs, the researchers can identify potential targets for new drug development. Dr. Yung’s team now reports that after treatment with PI3K inhibitors, the molecular profile of GSCs changed and shows increased levels of Wee-1, a critical protein in controlling cell division and growth. Combining a PI3K inhibitor with a Wee-1 inhibitor resulted in greater inhibition of cell growth and significantly, also induced the cancer cells into cell suicide. The two inhibitors used together also showed similar benefits in GBM complex tumor models. Continued success by Dr. Yung’s team in discovery of targets and design of rationale combination therapies may rapidly bring new treatments to the clinic.
Daniel Von Hoff, M.D. and Laurence Hurley, Ph.D.
NFCR Center for Targeted Cancer Therapies
Translational Genomics Research Institute, Phoenix, AZ
Research Focus: Targeted Therapeutics Development

At the NFCR Center for Targeted Cancer Therapies, Co-Directors Dr. Von Hoff and Dr. Hurley are pioneering new approaches to attack the so-called “undruggable” targets present in many tumors. They have had great success identifying multiple new compounds that selectively kill pancreatic cancer cells with mutations in the *K-ras* gene, and the leading compounds are currently being further developed for possible translation into the clinic. In addition, the Center is embarking on an entirely new approach to treating cancer, developing drugs that block newly-recognized genetic structures called “super enhancers.” These large clusters of DNA regulatory elements, which control expression of a host of genes — including the critical cancer gene c-Myc — offer a great opportunity to disrupt the network of genes associated with cancers. This new approach may lead to great improvements in the treatment of pancreatic cancer, lymphoma, multiple myeloma, colorectal and other cancers.

Wei Zhang, Ph.D.
NFCR Center for Cancer Systems Informatics
Wake Forest Baptist Medical Center, Winston-Salem, NC
(Formerly at MD Anderson Cancer Center, Houston, TX)
Research Focus: Cancer Genetics and Personalized Medicine

Molecular classification of patients into different subtypes based on genetic or epigenetic characteristics or biomarkers offers a great opportunity for personalized cancer treatment. Center researchers have the tools and the drive to interrogate and analyze large datasets of cancer from The Cancer Genome Atlas (TCGA). They identified mutations in the *ADAMTS* gene family in ovarian cancer cases which were significantly associated with an improved response to platinum-based chemotherapy and longer survival. They identified a new epigenetic biomarker for prognosis in GBM (glioblastoma multiforme) patients with multiple lesions. Cancer stem cell characteristics were identified in a subset of liver cancer patients who have a poor prognosis, a first step towards developing a system to classify this cancer on the basis of biomarkers. In these and other studies, this NFCR Center is making invaluable contributions to our understanding of the molecular and genomic events that underlie many cancer types and, ultimately, improving patient care.
Joint Tumor Tissue Bank
Tianjin Cancer Institute and Hospital, Tianjin, China

Research Focus: Early Detection of Lung Cancer

Lung cancer is the most commonly diagnosed cancer worldwide, and accounts for 18% of cancer deaths. When diagnosed in early stages, however, the 5-year survival is more than 50%, but is dismal when diagnosed at late stages. Better tools are needed to identify patients with lung cancer at early and potentially treatable stages.

Low dose, spiral CT scans for high risk populations are now recommended in the U.S. The cost of CT screening to the health care system is high; however, the follow-up testing is invasive. Additional tools are necessary to select and target the population at highest risk for lung cancer.

Collaborations have been initiated in the Joint Tumor Tissue Bank in Tianjin to develop a blood test for early detection of lung cancer. The test will measure a panel of biomarkers comprising tumor antigens and autoantibodies for people who are 20-pack/year smokers over age 50 without obvious symptoms of lung cancer. If successful, the simple blood test could be a very powerful and inexpensive tool to detect lung cancer at an early stage in this high risk population. In the long run, this could save tens of thousands of lives.

Brian Leyland-Jones, M.D., Ph.D.

Director, Consortium for Clinical Diagnostics (CCDx)

Research Focus: Biomarker Profiling and Validation

Biomarkers are revolutionizing cancer therapies and diagnostics. There is a growing and urgent need for biomarker profiling and validation in cancer research today. The Consortium for Clinical Diagnostics (CCDx) is a partnership of scientists at research institutions and biopharmaceutical companies dedicated to facilitating genomic research and diagnostics. Led by Director Dr. Brian Leyland-Jones, CCDx provides centralized infrastructure and expertise in genomics and molecular imaging as well as translational medicine. The Consortium can identify and validate disease genes and genetic signatures, and allow for the development of medical response tests as well as new and improved diagnostic tests — especially in the area of cancer.
Curt Civin, M.D.
University of Maryland School of Medicine, Baltimore, MD

Research Focus: Advancing Artemisinins for AML Treatment

Leukemia is a great success story for cancer research — one in which Dr. Civin played an important role. His early work on bone marrow stem cell transplantation was partially responsible for the dramatic increase in 5-year survival for all types of leukemia over the past 20 years. Unfortunately, acute myeloid leukemia (AML) remains the deadliest form of leukemia. Dr. Civin discovered that artemisinins, a class of drugs with low toxicity used to successfully treat malaria, are also effective in killing AML cancer cells. Through research, he identified ART-838, a specific artemisinin compound that shows remarkable preliminary effectiveness against leukemia cells and works well in combination with established anti-leukemia drugs. In addition, the compound can be given orally and stays active in the bloodstream for a long time, and doesn't appear to harm normal bone marrow cells. ART-838 may prove to be an effective new treatment for AML patients.

Paul Schimmel, Ph.D.
The Scripps Research Institute, San Diego, CA

Research Focus: New Avenues for Cancer Treatment

A world-renowned biochemist, Dr. Schimmel has dedicated his 40-year career to understanding how the genetic information encoded in RNA gets translated into protein — the most fundamental chemical process for all living things. His work has led to the discovery of a major new way to relieve the adverse effects of cancer drugs that can harm other parts of the body, especially the blood supply. One key protein Dr. Schimmel has been investigating was found to restore platelet counts, offering hope for cancer patients with thrombocytopenia. In addition, Dr. Schimmel and his team discovered how resveratrol, as a natural ingredient found in foods including cacao and grape skins, works with another key protein to produce protective effects against cancer — a true breakthrough for cancer prevention. The mechanism could also be utilized to develop new treatments or chemoprevention agents.

Yung-Chi Cheng, Ph.D.
Yale University School of Medicine, New Haven, CT

Research Focus: Using Traditional Chinese Medicine to Treat Cancers

While the therapeutic effects of Traditional Chinese Medicine (TCM) have been documented anecdotally for centuries, they have been too often discounted by modern medicine as “alternative therapy” because there was little rigorous scientific proof of their effectiveness. Dr. Cheng's laboratory is working to bring TCM into the mainstream of Western medicine. Their formulation of an ancient Chinese herbal formula, PHY906, is currently being evaluated in two separate Phase 2 clinical trials. In a trial treating colorectal cancer patients with the chemotherapy agent irinotecan (Camptosar®), PHY906 is an adjunct agent to reduce the chemotherapy-induced toxicity, especially diarrhea. A second trial uses PHY906 as an adjunct agent to enhance the anti-cancer effects of the drug, Sorafenib, in the treatment of liver cancer patients. PHY906 could become one of the first FDA-approved oral herbal medicines for cancer treatment. Dr. Cheng and his team are also evaluating other herbal formulas from TCM, with the hope of developing a new class of anti-cancer drugs.
ANTIOXIDANTS

Helmut Sies, M.D.
Heinrich-Heine-Universität, Düsseldorf, Germany
Research Focus: Nutrition and Cancer Prevention

Dr. Sies previously discovered that the antioxidant lycopene, a micronutrient found in tomatoes and other foods, has strong skin cancer prevention effects. Today, his research is focused on selenium (Se), a trace metal found in food sources such as certain nuts, seafood and organ meats, is essential for good health. There is epidemiological evidence that adequate intake of selenium is beneficial for human health and cancer prevention — especially colon cancer — and Dr. Sies is establishing the molecular basis for this effect. Key antioxidant enzymes called selenoproteins require selenium to repair oxidative damage. Dr. Sies discovered that not only are selenoproteins strongly decreased in colon cancer tumor cells, but they are strongly expressed by immune cells in the gut. Moreover, dietary selenium compounds were found to stimulate colon cells to produce selenoproteins, suggesting a potential mechanism for how selenium from ingested food supports immune health and cancer prevention.

REASON FOR HOPE: GBM AGILE

A light of hope has been ignited in the fight against GBM, a brain cancer that is widely regarded as incurable and universally fatal.

In November, in downtown Washington D.C., Dr. Anna Barker, Chair of GBM AGILE Executive Committee, former Deputy Director of the National Cancer Institute and current Director of the National Biomarker Development Alliance, along with leading GBM scientists and strategic partner organizations including the National Foundation for Cancer Research (NFCR), launched a new groundbreaking clinical trial for brain cancer.

GBM AGILE is an unprecedented clinical trial that promises to create an innovative, standing adaptive trial to identify effective therapies for GBM patients and ultimately deliver on the promise of precision medicine. The FDA Director of the Center for Drug Evaluation and Research, Dr. Janet Woodcock, observed when referring to the GBM AGILE trial: “This is the future.” Rare, often deadly diseases, such as GBM, require innovative trial designs to rapidly evaluate therapies, and in that regard, we believe that GBM AGILE has the potential to change the future for all clinical trials.

Traditional clinical trials take three to seven years to produce results and cannot be modified once they begin. In this model, patients get only one opportunity and receive only one treatment. By the time results are produced, the treatment protocol is already many years old.

In contrast, adaptive trials test multiple treatments and combinations of treatments simultaneously. Adaptive trials are designed to be continuously updated, to incorporate the latest information using a technique called Bayesian Statistics. This feature provides the “Innovative Learning Environment,” in which ineffective treatments can be shut down early, and new treatments can be initiated quickly.
The day of launch events included world-class neurosurgeons, neuro-oncologists, basic and clinical investigators, and representatives from the GBM advocacy communities. NFCR has taken a leading role in coordinating the international collaborations for the GBM AGILE trial.

Dr. Sujuan Ba, who is known for her extensive work at NFCR on facilitating international collaboration on novel cancer research projects, is serving as a member of the GBM AGILE Executive Committee. During an interview on the PBS television show, White House Chronicle, Dr. Ba said, “GBM AGILE goes to the heart of NFCR’s mission. This is what we do to help find cures for cancer. One of the things that we bring to the table is help in recruiting researchers to the effort.”

A coalition as diverse and powerful as GBM AGILE has never come together in support of GBM before. Through the crowdsourcing of knowledge and the inclusion of patients from around the globe, this adaptive trial platform is bringing hope for treatments and cures to a disease that is sorely needed. This is Research for a Cure.

For patients, families and caregivers of those with GBM, the light of hope that surrounds GBM AGILE is precious and inspiring. This moved Vice President Joe Biden to join the group and offer his encouragement and support. “You helped me clarify in my mind what had to be done,” Biden told the GBM AGILE coalition. “You have helped me begin to realize how to get my arms around this...there is no reason why we can’t make gigantic strides.”

Biden’s oldest son Beau died from GBM earlier in 2015, and the Vice President, who attended the event with his son Hunter and daughter-in-law Kathleen, acknowledged that GBM AGILE will provide patients with the hope that they won’t need to wait up to several years for small and scattered trials to run their course. GBM AGILE will allow them to get benefits more quickly from new treatment strategies.

According to Dr. Barker, the protocol is designed to allow treatments to “Fail Fast” and “Correct Even Faster.” The plan for the trial, according to Dr. Barker, is to “begin accepting patients by mid-2016.”

A coalition as diverse and powerful as GBM AGILE has never come together in support of GBM before. Through the crowdsourcing of knowledge and the inclusion of patients from around the globe, this adaptive trial platform is bringing hope for treatments and cures to a disease that is sorely needed. This is Research for a Cure.
2015 Szent-Györgyi Prize recipient Frederick W. Alt, Ph.D., along with prize selection committee co-chair Sujuan Ba, Ph.D. and committee member Webster K. Cavenee, Ph.D.
Frederick W. Alt, Ph.D., Director of the Program in Cellular and Molecular Medicine at Boston Children’s Hospital, was awarded the 2015 Szent-Györgyi Prize for Progress in Cancer Research. Dr. Alt’s groundbreaking work in cancer genetics over four decades helped to shape the very roots of modern cancer research. Today that work continues to bear fruit, profoundly impacting the approach that doctors use to diagnose and treat cancer.

NFCR’s selection committee was unanimous in its decision to recognize Dr. Alt, whose work has proved foundational to the modern understanding of cancer — not only how the lethal disease forms, but also how it can become resistant to treatment. In particular, his seminal discoveries of gene amplification and his pioneering work on the chemistry of DNA damage repair have helped to usher in the era of genetically-targeted therapy and personalized medicine.

“Dr. Alt has been a consistently outstanding scientist throughout his career, and this award recognizes his entire body of work,” said Dr. James Allison, Executive Director of the Immunotherapy Platform at MD Anderson Cancer Center, winner of the 2014 Szent-Györgyi Prize, and Chair of the 2015 Prize Selection Committee. “The mechanisms he described are central to an entire class of targeted therapy and associated diagnostics, which have saved countless lives.”

Dr. Alt’s original concept of gene amplification — the idea that cells can produce multiple copies of a gene, each with its DNA sequence slightly rearranged — was revolutionary, coming at a time when the human genome was widely believed to be stable and inflexible. This radical idea suggested that cells could change their genes, a process that would both allow normal cells to develop cancer-causing genes and enable cancer cells to evolve resistance to treatment. Dr. Alt proved the reality of this concept when he showed that the gene n-myc is commonly amplified in the childhood cancer neuroblastoma. Today, genomic instability is recognized as one of the hallmarks of cancer.

“I am truly honored to be selected by the National Foundation for Cancer Research to receive this award, and I am humbled to stand with past winners of the Szent-Györgi Prize,” Dr. Alt told leaders in cancer research. “Cancer is a complex and terrible disease, but with each new discovery we are making it less mysterious, more understandable, and ultimately less deadly. We are making progress.”

“Dr. Alt’s work has uncovered and explained some of the most foundational chemistry of life, and throughout his career he has always been focused on the implications for cancer. His vision and talent were instrumental in bringing cancer research into the modern era, and we are proud to present him with this award,” said Sujuan Ba, Ph.D., Co-chair of the 2015 Szent-Györgyi Prize Selection Committee and President of NFCR.

2015 Szent-Györgyi Prize recipient Frederick Alt, Ph.D.

Equally important is Dr. Alt’s work on the critical DNA repair mechanism called “non-homologous end joining” (NHEJ). Dr. Alt not only discovered this pathway, but also carried out an ingenious series of experiments over many years, taking it apart piece by piece to understand how it works. This work linked NHEJ to a specific kind of DNA damage called “translocation,” which is a major component of many cancers, especially leukemia and lymphoma.

Both amplified genes and translocated genes are key components of the Precision Medicine paradigm which is at the heart of 21st century medicine. By identifying the source of genetic abnormalities that drive both cancer development and drug resistance, Dr. Alt’s insights helped to revolutionize cancer diagnostics and treatment. His discoveries led to a entirely new approach to treating cancer — identifying these genetic abnormalities, then selecting new drugs that target each specifically.

Keynote Speaker Senator Ed Markey (D-MA).
Play4TheCure efforts continued to impact NFCR’s fundraising in 2015 with a number of new events and partnerships, most notably a partnership with US Lacrosse, the national governing body of lacrosse. They joined forces to grow the game while raising funds and awareness for cancer research. Play4TheCure has been adopted as the beneficiary of multiple lacrosse leagues’ year-end jamborees. This also led to Play4TheCure’s first partnership with a professional sports franchise, the Boston Cannons. Other 2015 highlights include the addition of 100 new participating teams as well as 80 teams raising over $1,000 each!

Loomis Chaffey Varsity Field Hockey sported pink uniforms in their annual Play4TheCure game against Westminster (CT).

Good Counsel (MD) and Paul VI (VA) participated in the 1st Annual Play4TheCure Cancer Research Week, which involved basketball teams nationwide.

Gonzaga College High School and St. Albans School both participated in the DC Classic, which supported the growth of the game of lacrosse and raised money for cancer research (Washington, DC).
The 34th annual Daffodils and Diamonds Luncheon and Fashion Show was a fabulous event, held on March 12, 2015 at the elegant Columbia Country Club in Chevy Chase, Maryland. This special day has become a beloved spring ritual, gathering three hundred ladies from the Washington D.C. area. Daffodils and Diamonds 2015 raised an impressive $90,000 to support NFCR breast and ovarian cancer research programs. “I founded Daffodils and Diamonds 34 years ago in honor of my mother’s long battle with cancer,” says founder Alice-Anne Birch. “She attended several, helping to create the boutique luncheon we have nurtured into a unique, beautiful event. I consider it my legacy.”

This special event was hosted by Alison Starling, WJLA TV ABC 7 News Anchor, and included an upbeat and stylish fashion show presented by Julia Farr Collection. The program also included a champagne reception, a lovely silent auction featuring David Yurman jewelry and a variety of well-known local artists’ paintings and premiere sports tickets.

The Annual Golf & Tennis Classic was held at Bethesda Country Club in Bethesda, Maryland, Monday, October 5, 2015. This was the 12th year for the Golf Classic and the second for the Tennis Classic. The event brought golfers and tennis players from across the country together for a terrific day on the course and courts. The special event raised more than $66,000 to support NFCR’s life-saving cancer research programs. This year’s event was sponsored by The Calmark Group with other significant sponsorships from UBS, Copilevitz & Canter LLC, Enterprise Holdings, Sandy Spring Bank, Charles Schwab, Brooks Brothers, Cabinet Discounters, Atlas Wood Floors, Handell, Inc. and Redfield & Company. “The support from the business community was wonderful” said Tracy Tkac, Event Chair of the Golf and Tennis Classic. “We could not have done it without their generous contributions. We were also so grateful for the volunteers who donated their time and energy to this NFCR event.”
Research takes time and needs unwavering support, and the path from a promising discovery to an effective treatment often takes a decade or more. NFCR’s Scientific Advisory Board (SAB) plays a key role in guiding and prioritizing our global research program, prioritizing the connections between basic and clinical research, and translating discoveries in the laboratory into health benefits for patients — giving reason to hope in the progress being made against cancer — new treatments brought into the clinic, patients saved, and cures delivered.

In 2015, NFCR expanded its SAB to include Webster K. Cavenee, Ph.D., Chair; Frederick W. Alt, Ph.D.; Ruggero De Maria, M.D.; Kanaga Sabapathy, Ph.D.; and Peter K. Vogt, Ph.D. This international group of distinguished research leaders will attend grant review assessments, workshops, and other relevant meetings and will work closely with NFCR leadership to explore the best approaches to get us closer to improving cancer treatments and curing this disease.

Research will cure cancer, and NFCR is about research. This SAB is about creating an environment that works to liberate science — an architecture for discovery, and the roadmap to new approaches for treating cancer — all types of cancer.

The appointments to NFCR’s Scientific Advisory Board include:

Webster K. Cavenee, Ph.D., Chairman,
Director of Strategic Alliances in Central Nervous System Cancers, Ludwig Institute for Cancer Research, San Diego, and Distinguished Professor at the University of California, San Diego. Dr. Cavenee’s pioneering research in cancer genetics has fundamentally changed our understanding of tumor initiation and progression. His research on the brain cancer, glioblastoma multiforme (GBM), is illuminating the mechanisms of growth and survival of GBM and identifying potential new therapeutics. He is an Executive Director of GBM AGILE, a global effort to defeat GBM. He is a member of the National Academy of Sciences and the National Academy of Medicine. Among many of his honors, Dr. Cavenee was awarded the Szent-Györgyi Prize for Progress in Cancer Research.

Frederick W. Alt, Ph.D.,
Director of the Program in Cellular and Molecular Medicine at Boston Children’s Hospital, Charles A. Janeway Professor of Pediatrics at Boston Children’s Hospital, and professor of genetics at Harvard Medical School. Dr. Alt’s groundbreaking work in cancer genetics and his seminal discovery of gene amplification has proved foundational to the modern understanding of how cancer forms and how it can become resistant to treatment. Dr. Alt is a recipient of the Szent-Györgyi Prize for Progress in Cancer Research, the Lewis S. Rosenstiel Award for Distinguished Work in Basic Medical Research, among other awards. He is a member of the National Academy of Sciences and the National Academy of Medicine.

Ruggero De Maria, M.D., President of the Alliance Against Cancer and Director, Institute of Pathology, Catholic University, Rome, Italy.
Dr. De Maria’s research characterizes innovative biomarkers and molecular targets in cancer stem cells (CSCs) — cells responsible for tumor initiation and growth, to develop novel cancer therapies and improve cancer management. His research team was the first to isolate CSCs from colon and lung cancers. His research also includes microRNA and the microenvironment in solid tumors. He is currently a member of the Pezcoller Foundation–AACR Innovator Scientific Advisory Board.

Kanaga Sabapathy, Ph.D., Head of Division of Cellular & Molecular Research and Director of Planning & Strategy at The National Cancer Center Singapore, Professor at the Duke–National University of Singapore (NUS) Graduate Medical School, and Director of the Academic Clinical Program in Oncology, SingHealth.
Dr. Sabapathy’s research on the molecular mechanisms of cancer formation and therapeutic resistance, includes elucidation of mutant p53 — the most widely mutated gene in cancer, and key gene, p73. For his research in identifying targets for therapy and designing of better treatment approaches, in 2015 Dr. Sabapathy was a recipient of Singapore’s inaugural National Research Foundation Investigatorship to pursue groundbreaking, high-risk research.

Peter K. Vogt, Ph.D., Executive Vice President, Chief Science Officer, and Professor in Department of Molecular and Experimental Medicine, at The Scripps Research Institute in La Jolla, California.
His seminal discovery of src, the first cancer-causing gene, or oncogene, contributed to our present understanding of many critical molecular mechanisms of cancer. His contributions include the identification of other oncogenes such as myc, jun and PI3-kinase — one of today’s most promising cancer targets. Dr. Vogt has received numerous awards including the Albert Szent-Györgyi Prize for Progress in Cancer Research. He is a member of the National Academy of Sciences and the National Academy of Medicine and other prestigious scientific organizations.
A new era is dawning in the diagnosis and treatment of cancer. The “black box” that was once the cancer cells has been opened. NFCR researchers, with the grassroots support of millions of Americans, have pioneered the redefinition of cancer as a genomic disease, transforming medicine and bringing hope to patients worldwide.

Cancer is often caused by errors in genes, usually multiple errors in those that control some aspect of cell growth and division. Though some of these errors may be inherited, most are acquired. Sunlight, cigarette smoke, toxins and aging itself help these errors accumulate. NFCR scientists worldwide are hard at work on cancer therapies that target the products of these broken genes — the very genes that make a cell cancerous. Unlike traditional chemotherapies and radiation, these new treatments aim to halt the processes that make a normal cell turn into a cancer cell in the first place — an approach with less collateral damage on healthy cells.

We are at a turning point in medicine. For decades, the disease model was confined to what doctors could observe in tissues and organs. Now, being able to determine which genes and proteins are driving the cancer process in an individual patient, we can define more precise targets for cancer treatments. NFCR research is helping to build a future where cancer is detected so early that we can intervene before the cancer is visible under the microscope. This is molecular medicine — these new approaches to treating cancer are less miss and a lot more hit.

Thank you for joining us in our mission — to advance the critical research that will bring a cure for cancer — all types of cancer.
Board of Directors
National Foundation for Cancer Research, Inc.

Report on the Financial Statements
We have audited the accompanying consolidated financial statements of National Foundation for Cancer Research, Inc. and affiliates, which comprise the consolidated statements of financial position as of December 31, 2015 and 2014 and the related consolidated statements of activities, functional expenses and cash flows for the years then ended, and the related notes to the consolidated financial statements.

Management’s Responsibility for the Financial Statements
Management is responsible for the preparation and fair presentation of these consolidated financial statements in accordance with accounting principles generally accepted in the United States of America; this includes the design, implementation, and maintenance of internal control relevant to the preparation and fair presentation of consolidated financial statements that are free from material misstatement, whether due to fraud or error.

Auditor’s Responsibility
Our responsibility is to express an opinion on these consolidated financial statements based on our audits. We conducted our audits in accordance with auditing standards generally accepted in the United States of America. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the consolidated financial statements are free from material misstatement.

An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the consolidated financial statements. The procedures selected depend on the auditor’s judgment, including the assessment of the risks of material misstatement of the consolidated financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity’s preparation and fair presentation of the consolidated financial statements in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the entity’s internal control. Accordingly, we express no such opinion. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of significant accounting estimates made by management, as well as evaluating the overall presentation of the consolidated financial statements.

We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.

Opinion
In our opinion, the consolidated financial statements referred to above present fairly, in all material respects, the financial position of National Foundation for Cancer Research, Inc. and affiliates as of December 31, 2015 and 2014, and the changes in their net assets and their cash flows for the years then ended in accordance with accounting principles generally accepted in the United States of America.

Brad Berbe
A Professional Corporation
Bethesda, Maryland
May 3, 2016
National Foundation for Cancer Research, Inc.
Consolidated Statements of Financial Position
December 31, 2015 and 2014

Assets

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>$2,820,551</td>
<td>$3,709,632</td>
</tr>
<tr>
<td>Accounts receivable</td>
<td>286,488</td>
<td>169,251</td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>389,623</td>
<td>452,366</td>
</tr>
<tr>
<td>Furniture and equipment, net of accumulated depreciation and amortization</td>
<td>54,121</td>
<td>56,403</td>
</tr>
<tr>
<td>Investments</td>
<td>7,547,216</td>
<td>7,733,455</td>
</tr>
<tr>
<td>Amounts held in trust by others</td>
<td>2,376,158</td>
<td>2,534,921</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$13,474,157</td>
<td>$14,656,028</td>
</tr>
</tbody>
</table>

Liabilities and Net Assets

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts payable</td>
<td>$848,870</td>
<td>$922,173</td>
</tr>
<tr>
<td>Research contracts and grants payable</td>
<td>967,837</td>
<td>2,091,986</td>
</tr>
<tr>
<td>Accrued compensation and benefits</td>
<td>120,775</td>
<td>123,429</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>1,937,482</td>
<td>3,137,588</td>
</tr>
</tbody>
</table>

Net Assets

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted</td>
<td>4,420,930</td>
<td>4,394,430</td>
</tr>
<tr>
<td>Designated for research contracts</td>
<td>3,738,277</td>
<td>3,543,743</td>
</tr>
<tr>
<td>Undesignated</td>
<td>8,159,207</td>
<td>7,938,173</td>
</tr>
<tr>
<td>Temporarily restricted</td>
<td>1,418,289</td>
<td>1,469,940</td>
</tr>
<tr>
<td>Permanently restricted</td>
<td>1,959,179</td>
<td>2,110,327</td>
</tr>
<tr>
<td>Total Net Assets</td>
<td>11,536,675</td>
<td>11,518,440</td>
</tr>
</tbody>
</table>

Total Liabilities and Net Assets

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Liabilities and Net Assets</td>
<td>$13,474,157</td>
<td>$14,656,028</td>
</tr>
</tbody>
</table>

For more information, please visit www.nfcr.org.
NATIONAL FOUNDATION FOR CANCER RESEARCH, INC.

CONSOLIDATED STATEMENTS OF ACTIVITIES

FOR THE YEARS ENDED DECEMBER 31, 2015 AND 2014

<table>
<thead>
<tr>
<th></th>
<th>2015 Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Permanently Restricted</th>
<th>Total</th>
<th>2014 Unrestricted</th>
<th>Temporarily Restricted</th>
<th>Permanently Restricted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVENUE AND SUPPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public support</td>
<td>$10,012,371</td>
<td>$706,343</td>
<td>$ —</td>
<td>$10,718,714</td>
<td>$10,688,367</td>
<td>$300,441</td>
<td>$ —</td>
<td>$10,988,808</td>
</tr>
<tr>
<td>Bequests</td>
<td>1,721,327</td>
<td>—</td>
<td>—</td>
<td>1,721,327</td>
<td>2,481,734</td>
<td>—</td>
<td>—</td>
<td>298,654</td>
</tr>
<tr>
<td>Mailing list rental</td>
<td>358,032</td>
<td>—</td>
<td>—</td>
<td>358,032</td>
<td>370,997</td>
<td>—</td>
<td>—</td>
<td>370,997</td>
</tr>
<tr>
<td>Investment income</td>
<td>(3,850)</td>
<td>—</td>
<td>—</td>
<td>(3,850)</td>
<td>279,266</td>
<td>—</td>
<td>—</td>
<td>279,266</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in value of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>split-interest</td>
<td>(57,754)</td>
<td>(7,620)</td>
<td>(151,148)</td>
<td>(216,522)</td>
<td>(20,537)</td>
<td>26,306</td>
<td>115,926</td>
<td>121,695</td>
</tr>
<tr>
<td>agreements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other revenue</td>
<td>23,327</td>
<td>—</td>
<td>—</td>
<td>23,327</td>
<td>75,955</td>
<td>—</td>
<td>—</td>
<td>75,955</td>
</tr>
<tr>
<td>Non-cash research</td>
<td>590,028</td>
<td>—</td>
<td>—</td>
<td>590,028</td>
<td>1,510,916</td>
<td>—</td>
<td>—</td>
<td>1,510,916</td>
</tr>
<tr>
<td>support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net assets released</td>
<td>750,374</td>
<td>(750,374)</td>
<td>—</td>
<td>—</td>
<td>448,209</td>
<td>(448,209)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>from restrictions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL REVENUE</td>
<td>13,393,855</td>
<td>(51,651)</td>
<td>(151,148)</td>
<td>13,191,056</td>
<td>15,834,907</td>
<td>(121,462)</td>
<td>414,580</td>
<td>16,128,025</td>
</tr>
</tbody>
</table>

| EXPENSES | | | | | | | | |

Program Services

Research	3,950,277	—	—	3,950,277	5,613,499	—	—	5,613,499
Public education	5,729,242	—	—	5,729,242	5,767,573	—	—	5,767,573
and information								
Subtotal	9,679,519	—	—	9,679,519	11,381,072	—	—	11,381,072

Supporting Services

Fundraising	2,654,129	—	—	2,654,129	2,805,853	—	—	2,805,853
Management and	839,173	—	—	839,173	889,056	—	—	889,056
general								
Subtotal	3,493,302	—	—	3,493,302	3,694,909	—	—	3,694,909
TOTAL EXPENSES	13,172,821	—	—	13,172,821	15,075,981	—	—	15,075,981

CHANGE IN NET ASSETS

| | 221,034 | (51,651) | (151,148) | 18,235 | 758,926 | (121,462) | 414,580 | 1,052,044 |

NET ASSETS AT BEGINNING OF YEAR

| | 7,938,173 | 1,469,940 | 2,110,327 | 11,518,440 | 7,179,247 | 1,591,402 | 1,695,747 | 10,466,396 |

NET ASSETS AT END OF YEAR

| | $8,159,207 | $1,418,289 | $1,959,179 | $11,536,675 | $7,938,173 | $1,469,940 | $2,110,327 | $11,518,440 |

For more information, please visit www.nfcr.org.
EXTRAORDINARY SUPPORT

2015 was distinguished by the extraordinary breadth and depth of support for NFCR. An unprecedented number of donors, corporations, foundations and institutions made gifts totaling $13,150,022. We are deeply grateful to all of our donors for their generosity and confidence in our vision of Research for a Cure. Every gift, large and small, is an investment in new and better ways to prevent, diagnose and treat cancer. NFCR is about cancer research, for research will cure cancer.

On these pages, we are pleased to recognize those donors, corporations, foundations and institutions who made significant gifts to the National Foundation for Cancer Research in 2015.
Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2015 and December 31, 2015.
Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2015 and December 31, 2015.
Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2015 and December 31, 2015.

The Legacy society recognizes donors who have chosen to create a substantial legacy in cancer research by leaving a gift to NFCR through their estate, or by utilizing other planned gift vehicles to support NFCR’s cancer research. We are grateful to these donors for their dedication and foresight and are proud to recognize them through membership in the NFCR Legacy Society.

LEGACY SOCIETY DONORS

Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2015 and December 31, 2015.
NFCR BOARD OF DIRECTORS

TREASURER
Mark Baran
Managing Director
Four Springs Capital, LLC
New Jersey

CHAIRMAN
Joseph F. Franlin
Co-Founder
Neustar, Inc.
Pennsylvania

Padmakumar Kaimal, Ph.D.
Vice-President
Technology Alliance & Business Development
Suven Life Sciences
New Jersey

Managing Director
Four Springs Capital, LLC
New Jersey

Wendi Picker Dennard
President and CEO
Accommodations Unlimited
Virginia

Michael J. Burke
Principal
York, Burke & Lee
Maryland

Edward S. West
Principal
Law Offices of Edward S. West
Maryland

NFCR BOARD OF ADVISORS

Abraham Amoros
Chief of Communications
Office of the Governor of Pennsylvania

Ken Hansen
Sr. Director
Registry Services, Business Development
NeuStar, Inc.

Tina Reinprecht
Founder
Play4theCure

Marianne Bouldin
Co-Founder
Hope Fund for Sarcoma Research

Richard Mallery, Esq.
Managing Partner
Snell & Wilner, LLC

Anne Rouse
NFCR Volunteer

Nancy Flood Cole
Special Event Consultant

Mary Ann Miller
NFCR Supporter

Melissa Siegel
Philanthropist and Community Activist

Allan Ettinger
Senior Vice President–Wealth Management,
Senior Investment Management Consultant,
MorganStanley SmithBarney

Stephen Minar
Vice President
BlackRock

David M. Sotsky
Financial Advisor
Merrill Lynch

Judith A. Franlin
Philanthropist and Community Activist

William Potter
President
Robert R. Meredith, Inc.

John Stanovick
Mathematical Statistician
United States Department of Agriculture
Forest Service

Sarah Funt
Realtor
Long & Foster Realtors

Brian Vogel
Associate Vice President, Client Advisor
Bessemer Trust

Ken Hansen
Sr. Director
Registry Services, Business Development
NeuStar, Inc.

Kanaga Sabapathy, Ph.D.
Head, Division of Cellular & Molecular Research,
Director of Planning & Strategy
National Cancer Center, Singapore;
Director, Academic Clinical Program in Oncology,
SingHealth Hospital System;
Professor, Cancer and Stem Cell Biology Program,
Duke–NUS Graduate Medical School

Judith P. Barnhard, CPA
Partner
May & Barnhard, PC
Maryland

Nancy Flood Cole
Special Event Consultant

Ruggero De Maria, M.D.
President, Alliance Against Cancer;
Director, Institute of Pathology, Catholic University,
Rome, Italy

Peter K. Vogt, Ph.D.
Professor, Department of Molecular and Experimental Medicine,
Executive Vice President and Chief Science Officer,
The Scripps Research Institute, La Jolla

Ken Hansen
Sr. Director
Registry Services, Business Development
NeuStar, Inc.

NFCR SCIENTIFIC ADVISORY BOARD

Webster K. Cavenee, Ph.D., Chairman
Director of Strategic Alliances in Central Nervous System Cancers,
Ludwig Institute for Cancer Research, San Diego

Frederick W. Alt, Ph.D.
Director, Program in Cellular & Molecular Medicine,
Charles A. Janeway Prof. Pediatrics, Boston Children's Hospital;
Professor of Genetics, Harvard Medical School;
Howard Hughes Medical Institute

Kwok Leung, Ph.D., Chief Financial Officer and Secretary

Ruggero De Maria, M.D.
President, Alliance Against Cancer;
Director, Institute of Pathology, Catholic University,
Rome, Italy

NFCR OFFICERS

Franklin C. Salisbury, Jr., Chief Executive Officer
Sujuan Ba, Ph.D., President

Peter K. Vogt, Ph.D.
Professor, Department of Molecular and Experimental Medicine,
Executive Vice President and Chief Science Officer,
The Scripps Research Institute, La Jolla

Tina Reinprecht
Founder
Play4theCure

Anne Rouse
NFCR Volunteer

NFCR OFFICERS

Franklin C. Salisbury, Jr., Chief Executive Officer
Sujuan Ba, Ph.D., President

Kwok Leung, Ph.D., Chief Financial Officer and Secretary

Ken Hansen
Sr. Director
Registry Services, Business Development
NeuStar, Inc.

Tina Reinprecht
Founder
Play4theCure

Anne Rouse
NFCR Volunteer

Webster K. Cavenee, Ph.D., Chairman
Director of Strategic Alliances in Central Nervous System Cancers,
Ludwig Institute for Cancer Research, San Diego

Frederick W. Alt, Ph.D.
Director, Program in Cellular & Molecular Medicine,
Charles A. Janeway Prof. Pediatrics, Boston Children's Hospital;
Professor of Genetics, Harvard Medical School;
Howard Hughes Medical Institute

Ruggero De Maria, M.D.
President, Alliance Against Cancer;
Director, Institute of Pathology, Catholic University,
Rome, Italy

Kwok Leung, Ph.D., Chief Financial Officer and Secretary

Peter K. Vogt, Ph.D.
Professor, Department of Molecular and Experimental Medicine,
Executive Vice President and Chief Science Officer,
The Scripps Research Institute, La Jolla

NFCR OFFICERS

Franklin C. Salisbury, Jr., Chief Executive Officer
Sujuan Ba, Ph.D., President

Kwok Leung, Ph.D., Chief Financial Officer and Secretary