OUR MISSION

The National Foundation for Cancer Research (NFCR) was founded in 1973 to support cancer research and public education relating to the prevention, early diagnosis, better treatments and, ultimately, a cure for cancer. NFCR promotes and facilitates collaboration among scientists to accelerate the pace of discovery from bench to bedside. NFCR is committed to Research for a Cure – cures for all types of cancer.

OUR VISION

NFCR is committed to fighting cancer by funding high-risk, high-impact, and potentially high-reward discoveries in the labs and transforming them into life-saving treatments for cancer patients. Through global collaboration, NFCR is making unique impact on a new and accelerated path to cures. NFCR envisions a world without cancer!

TABLE OF CONTENTS

Letter from the President & CEO ...1
Legacy Gift Sparks United Research Effort ...2
NFCR Basic Cancer Research Highlights ...4
NFCR Translational Research Highlights ...8
Szent-Györgyi Prize for Progress in Cancer Research12
Salisbury Award-Winning Technology Entering Next Phase To Reach Clinics ...13
AIM-HI Women’s Venture Competition ..14
A Family’s Memorial Tribute for One Gone Too Soon15
Supporters Coast-to-Coast ..16
Ways to Get Involved ...18
Board of Directors, Scientific Advisory Board 20
Financial Summary .. 22
Dear NFCR Donors and Supporters,

We are pleased to present the 2020 Annual Report of the National Foundation for Cancer Research (NFCR). This report highlights the progress we have made towards our mission to support research to cure cancer—all types of cancer.

In 2020, we were confronted by the global pandemic. But we will remember 2020 as a triumph of science. The fastest vaccine development program in history is not just a miracle or a coincidence—it is a story of the power of collaboration.

COVID-19 has shown us what is possible when the hands of science worldwide are united. We all have witnessed that soon after the novel coronavirus was diagnosed, scientists in both academic and industry settings worked together to identify, unlock, and sequence its genetic code. The sharing of this information by researchers everywhere made the rapid development of multiple safe and effective vaccines possible.

During the past several decades, tremendous amounts of resources have been invested in basic science research. Advances in genomic cancer research, diagnostic techniques, targeted therapies, vaccines for cancer, and other medical breakthroughs laid the foundation for creating these vaccines and treatments for COVID-19.

Together with your support, the progress in this report highlights the achievements and momentum in 2020 that continues into the future. 2021 is one of the most significant years of progress against cancer. Examples of the exciting developments we expect to see in the coming years include:

• Artificial intelligence-based cancer detection technologies to reduce the number of false positives and negatives.
• New tools that allow gene expression mapping in a cancer biopsy to develop more effective treatments.
• New drugs capable of turning cancer cells back to normal instead of destroying them outright.

NFCR funds research to cure cancer and help keep innovative discoveries from languishing in labs. We collaborate with academia, industry, and investors to accelerate breakthroughs into treatments, ultimately saving more lives. Your dedication to our mission is instrumental to bringing the discoveries from the lab to clinics and benefit patients.

Thank you for your past support. Your continued dedication will ensure the triumph of science in defeating cancer!

Sincerely,

Sujuan Ba, Ph.D.
President & CEO
THE EVOLUTION OF NFCR

In an 1856 letter to American botanist Asa Gray, Charles Darwin wrote, “In the long history of humankind (and animal kind, too) those who learned to collaborate and improvise most effectively have prevailed.”

Collaboration has long been a bedrock principle of NFCR, beginning with Franklin C. Salisbury, Sr., an attorney and entrepreneur. In 1971, Salisbury was reading an article in the Washington Evening Star about research funding hardships of Dr. Albert Szent-Györgyi.

Dr. Szent-Györgyi, recipient of the 1937 Nobel Prize in Physiology or Medicine for his work on Vitamin C, theorized that cancer was ultimately an electronic problem at the molecular level.

In time, this theory led to the concept of free radicals and cancer causation. Traditional research funding agencies viewed Szent-Györgyi’s research as too uncertain and declined to fund his grant proposal.

Moved by Dr. Szent-Györgyi’s plight, Salisbury sent him a $25 contribution, and thus began a promising partnership. Salisbury’s modest donation turned out to be the seed from which an enormously significant and far-reaching partnership grew.

The two envisioned a non-profit charity that would raise funds to support innovative cancer research.

That is how NFCR was founded in 1973.

Since then, with the grassroots support of millions of Americans, NFCR has provided over $390 million dollars to pioneering scientists, supplying vital seed funding for high-risk, high-reward research that typically is not funded by government agencies.

"Cancer has no border" said Dr. Sujuan Ba, NFCR President and CEO, who builds innovative global collaboration platforms. "NFCR is a “Laboratory without Walls”.

A LEGACY WISH FULFILLED

In 2016, long-term NFCR supporter, Marilyn Hill, died from cancer. In her will, she left NFCR a generous bequest. Her wish was to fund a collaborative team whose research focused on improving the outlook for patients with the deadliest type of breast cancer.

Dr. Ba introduced a trustee of the Marilyn Hill estate, Stephanie Smith, to one of NFCR’s longstanding scientist, molecular pharmacologist Dr. Susan Band Horwitz.

Professor Horwitz had led her team at Albert Einstein College of Medicine to discover how the natural product drug, Taxol®, works in the body to halt cancer. Years later it became the standard treatment for patients with triple-negative breast cancer (TNBC) and other breast, lung, ovarian, and pancreatic cancers.

Professor Horwitz’s program also involved researching other natural products that could be used to treat TNBC and other cancers that become resistant to Taxol. This led to a fruitful collaboration with medicinal chemist, Professor Amos B. Smith III.

Professor Smith is the Rhodes-Thompson Professor of Chemistry at the University of Pennsylvania (Penn), renowned for synthetic innovations in chemistry for therapeutic applications.

NFCR’s peer review panel allocated funds from the Hill estate trust to pursue a cross-disciplinary approach to the design and synthesis of drug compounds against TNBC.

The significant Hill Estate bequest enabled this collaborative project to proceed. Another scientist from the Albert Einstein College, Dr. Hayley McDaid, joined the team.
Now under Dr. McDaid’s leadership, the team demonstrated an impressive drug-effect profile for a novel molecule being investigated for resistance to Taxol. Interestingly, these modified molecules have enhanced ability to induce cancer cell death in Taxol-resistant models and a reduced inclination to induce a biologic state known as senescence — an outcome that may cause toxicities and is a significant property in contemporary anti-cancer drug development.

It should also be noted that Professor Smith was the department chair during Dr. Ba’s graduate training at Penn.

“I was thrilled to reconnect with Dr. Smith, one of the professors I remember fondly at Penn,” said Dr. Ba. “I am so happy to continue to contribute to research conducted at the Department of Chemistry at Penn. This way, I can fulfill the donor’s desire and give back to my alma mater, to which I am indebted for my education and career.”

BUILDING NEW COLLABORATIONS

In the fall of 2019, NFCR hosted its biannual Scientific Symposium of the State of Cancer Research and Global Collaboration. This forum allowed scientists to present their latest research findings. In attendance was Professor Jiancheng Hu of the National Cancer Center Singapore, a young molecular and cell biologist. Professor Hu’s team discovered the resistance mechanism of current inhibitors to an abnormal cell growth pathway found in 40% of cancers.

They had begun to develop new inhibitors to become the next generation treatment. However, Dr. Hu needed an expert chemist to optimize the lead candidate inhibitors. That is where a fortuitous match came to the rescue.

Dr. Smith raised questions with Dr. Hu during the symposium. They mutually decided to collaborate, believing a new design and synthesis of Hu’s lead drugs would improve their efficacy. It did not take long for Dr. Ba and members of NFCR’s Scientific Advisory Board to recognize the potential impact of a Hu-Smith intercontinental collaboration that could benefit patients globally.

The goal is to create a new drug candidate optimized by Professor Smith’s laboratory at Penn, with biochemical and clinical trials conducted by Professor Hu’s team in Singapore.

Dr. Smith remarked, “I am very excited about this collaboration to develop an efficacious inhibitor as a new treatment for many patients in great need. **Collaboration is the true path toward success**, and it is my honor and pleasure to work with Professor Hu. Our joint research is now possible through the generosity of NFCR and the vision of Dr. Sujuan Ba.”

“**NFCR works with the best teams anywhere in the world to advance the most innovative research projects that can potentially save patients’ lives,**” Dr. Ba noted. “We are fortunate to be living in an age in which technology breaks down barriers among scientific innovators around the world. **There is no telling where such collaboration can lead.**”

HOW TO LEAVE YOUR LEGACY

A charitable bequest is simply a gift you leave to a charity in a will. To ensure real hope for cures to cancer, consider including a gift to NFCR in your will. Supporting Research for a CURE will impact future generations while reducing inheritance taxes. We hope that, through careful estate planning, you decide a bequest works for you. If we can be of assistance, confidentially and at no obligation, please do not hesitate to contact us. 1-800-321-CURE.
The National Foundation for Cancer Research funds ‘high-risk and high-impact’ research with one absolute goal: *Research for a Cure* for all types of cancer. Cancer research requires a long-term commitment to make an impact. The newest treatments available today are often the fruits of research that started decades ago.

NFCR is dedicated to all aspects of cancer research along the entire continuum. **Basic discovery research** fuels all groundbreaking discoveries and increases our understanding of the fundamental nature of cancer. **Translational research** applies lab discoveries toward new and better cancer therapies and technologies and tests for safety for the first time in patients. **Clinical research** tests the effectiveness of therapies in patients to gain FDA approval as a new life-saving treatment.

Basic research by seven NFCR-funded scientists are highlighted below. Your critical support accelerates the pace of discovery that lays the foundation along the continuum of NFCR’s Journey of Cancer Research.

PIONEER IN GENE THERAPY

Jean Bennett, M.D., Ph.D.
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

Dr. Jean Bennett is a world leader and pioneering physician-scientist in the field of retinal (eye) gene therapy. She developed the first FDA-approved gene therapy for a genetic disease that causes a type of blindness in children, Leber’s congenital amaurosis (LCA). Although it is a rare disease, the gene therapy has paved the way for advancements to treat other eye diseases and other genetic diseases.

Dr. Bennett is collaborating with Dr. Katherine Uyhazi to focus on cancer associated retinopathy (CAR), a retinal disease that may occur in patients with various types of cancer. CAR and MAR (melanoma associated retinopathy) are rare syndromes caused by circulating anti-tumor antibodies that cross-react with proteins on healthy retinal cells and cause blindness.

Vision loss secondary to CAR and MAR often precedes the diagnosis of cancer, and warrants doctors to conduct a thorough systemic checkup to identify the primary cancer.

This cutting-edge research may improve our understanding of how the retina reorganizes itself after damage and **provide insight into treatment options for these blinding diseases caused by primary cancers of the body.**
NFCR-funded scientist, Dr. Jain, is a renowned expert in how changes in the tumor environment affect the immune system, treatment efficacy and patient survival.

Jain and colleagues applied a biological-based model based on inflammation and the immune system — originally designed to guide treatment decisions for cancer patients — to make COVID-19 treatments more effective.

The scientists found the direction of a COVID-19 patient’s response after five days of virus infection, depends on the immune response, especially the T cells — the immune system’s key and first responders.

In patients younger than 35 with a healthy immune system, a sustained T cell response occurs to decrease virus levels and inflammation, allowing patients to recover faster.

Older people who are likely to already have inflammation and a lower functioning immune system, the model’s suggested treatments include a blood clot-preventing drug and an immune response-modifier during early stages and an anti-inflammatory drug at later times.

This impressive study displays how research originally developed for cancer treatment can be useful in combating COVID-19.

Dr. Uyhazi is collaborating with Dr. Jean Bennett to develop a novel therapy for diseases of the retina (eye) that occurs in some cancer patients. The irreversible damage in cancer associated retinopathy (CAR) and melanoma associated retinopathy (MAR) results in vision loss and blindness.

Drs. Uyhazi and Bennett are pioneering new techniques to restore genes and damaged cells in the retina. In 2020, they made remarkable progress to:

• Characterize novel populations of photoreceptor precursor cells in the retina.
• Test best ways to purify and deliver cell populations in transplantation.
• Visualize photoreceptor precursor cells surviving after transplantation.
• Analyze cell viability, markers and potential functional improvement in models of CAR and MAR.

This groundbreaking research will give hope for restored vision to patients with CAR (small cell lung cancer and those with breast, lung, gynecologic, colon, pancreatic and prostate cancer) and MAR (melanoma).
Dr. Paul Schimmel is a world-renowned molecular biologist and biophysical chemist. His discovery of a DNA sequencing method in 1983 is celebrated as one of four key developments that launched the human genome era; revolutionizing diagnosis, prevention, and treatment of cancer.

He has devoted his career to the study of the essential and exquisite family of enzymes, the aminoacyl -tRNA synthetases or aaRS. These enzymes are believed to be among the first to arise on earth. Humans express 20 different aaRS enzymes, each responsible for attaching the appropriate amino acid during protein synthesis — a basic requirement for all living things.

Remarkably, the synthetases have been found to have other vital functions in our bodies and are associated with human diseases. As a leader in this new field, Dr. Schimmel’s discoveries have formed numerous biotechnology companies whose medicines have saved hundreds of thousands of lives.

In discovery research of Dr. Schimmel and his collaborator, Dr. Xiang-Lei Yang, they determined that one aaRS enzyme, SerRS, has great potential to become a novel anti-metastasis therapy.

Molecular biologist, Dr. Xiang-Lei Yang, in collaboration with Dr. Schimmel, determined that SerRS protein - in addition to its protein building function throughout evolution - has multiple anti-tumor and anti-metastasis properties and activates the immune system.

This would bode well as SerRS may serve as a combination therapy in one molecule. Anti-cancer and anti-metastasis properties of SerRS may include:

• Inhibits blood vessel growth, starving the tumor of oxygen and nutrients needed for its survival.
• Regulates how cells adhere to one another.
• Regulates how cancer cells leave the primary tumor.
• Activates the immune system to inhibit tumor progression.

In Dr. Yang’s lab, SerRS research as an anti-cancer and anti-metastasis treatment focuses on triple negative breast cancer (TNBC) – one of the most difficult-to-treat breast cancers.

Importantly, other cancer types are under the influence of SerRS’s anti-cancer properties. SerRS levels in cancer tissue correlate with survival in breast, rectal, esophageal, brain, kidney, lung and thyroid cancer.
Precision medicine characterizes the underlying genetic mechanisms responsible for cancer growth and progression. Dr. Wei Zhang’s research addresses the variability in cell properties, within and across cancer types, which often leads to treatment resistance and poor survival in patients.

His team uses cutting-edge genomic analyses and data processing methods to advance precision medicine.

In 2020, highlights from his lab include:

• Discovery of a second gene mutation combined with a cancer-causing gene in lung cancer serves as a marker of poor survival.

• Targeting metabolism in lung cells may improve immunotherapy in African American patients.

• Piloting a new technique to map protein expression to specific location in cells will help develop more effective therapeutics.

The Zhang lab’s research will impact patients with non-Hodgkin’s lymphoma, leukemia, melanoma, and cancers of the lung, gastrointestinal tract, pancreas, ovary, uterus, brain and liver.
NFCR Translational Research Highlights

Translational Research applies lab discoveries and breakthroughs toward new and better cancer-fighting therapies and technologies. NFCR empowers our scientists to engage in translational research and development to further advance basic science discoveries by providing funding with the goal to:

- Explore potential real-life applications of the innovative discoveries;
- Achieve an inflection point to attract external partners for further research, development and commercialization of new therapies, diagnostic tests and prevention technologies that could save lives.

Before clinical trials of a potential new treatment can be conducted, critical pre-clinical research is needed to prove feasibility for use in patients. Data is required of any new treatment or technology in order to apply for the Initial New Drug Application (IND)* from the U.S. Food and Drug Administration (FDA).

Here we highlight eight translational research programs of our most dedicated and talented entrepreneurs in our network conducting pre-clinical research.

Listed below are some critical results of pre-clinical research:

- Demonstrate safety of the potential new treatment in complex models.
- Verify the drug has the intended effects as it did in a test tube or cell line.
- Determine how the drug is metabolized.
- Validate quality control of its preparation.
- Plan step-by-step how the new drug is to be evaluated in patients.
Dr. Cheng and his team developed a four-herb formulation into YIV-906, a botanical drug with multiple anti-cancer properties that enhance immunotherapy and chemotherapy. NFCR’s continued funding has helped develop the lab’s exclusive botanical drug quality control and monitoring platform. To carry out human studies on YIV-906 and other herbal formulas, Dr. Cheng and Yale University co-founded the company, Yiviva.

In 2020, a global clinical trial began treating liver cancer patients with YIV-906 combined with a frontline drug. Since YIV-906 also protects the gastrointestinal tract from harsh side effects of many therapies, the botanical should alleviate adverse effects of the frontline drug. YIV-906 is also effective in other cancers.

With success in the final phase clinical trials, YIV-906 could become the first U.S.-approved botanical cancer drug. Once approved, testing and approval of YIV-906 in other cancers can occur so more patients may benefit.

OPTIMAL CANCER CARE WITH LIQUID BIOPSY

Dr. Haber is focused on the genetics of cancer and believes the circulating tumor cells (CTCs) traveling through a patient’s bloodstream are a ‘liquid biopsy’ for cancer care. He and his team impressively engineered the CTC-iChip device to capture the few CTCs in a patient’s blood sample among millions of healthy blood cells. They developed ways to analyze the genes in CTCs, providing a liquid biopsy in real time to:

- Define genetic mutations causing cancer treatment resistance.
- Guide the use of immunotherapy and other patient treatments.

Pre-clinical research will soon be completed and the company can apply for approval from the FDA — allowing doctors to use the blood test results to timely modify treatment plans for patients.

MULTI-ACTION GENE THERAPY FOR METASTATIC CANCERS

NFCR funding since 2008 helped Dr. Paul Fisher think “outside the box” to develop IL/24 gene therapy (IL/24 is from the Interleukin gene family of immune system modulators).

He engineered IL/24 gene to cause cancer cells — at all sites in the body — to commit suicide (normal way cells die). Healthy cells are unaffected. IL/24 gene, among its other anti-cancer actions, modulates the immune system to kill cancer. It sensitizes cancer to radiation, chemotherapy and immunotherapy.

Dr. Fisher formed the company, ILCT, Inc., (InterLeukin Combinatorial Therapies) to bring IL/24 gene therapy to clinical trials. The gene therapy is advancing through pre-clinical research to be a new treatment for fatal brain cancer. IL/24 gene therapy is also effective in models of melanoma and breast, colon, lung, bladder, liver, pancreas, and prostate cancer, among other types.

BOTANICAL DRUG REACHES PATIENTS IN CLINICAL TRIALS

Dr. Cheng and his team developed a four-herb formulation into YIV-906, a botanical drug with multiple anti-cancer properties that enhance immunotherapy and chemotherapy. NFCR’s continued funding has helped develop the lab’s exclusive botanical drug quality control and monitoring platform. To carry out human studies on YIV-906 and other herbal formulas, Dr. Cheng and Yale University co-founded the company, Yiviva.

In 2020, a global clinical trial began treating liver cancer patients with YIV-906 combined with a frontline drug. Since YIV-906 also protects the gastrointestinal tract from harsh side effects of many therapies, the botanical should alleviate adverse effects of the frontline drug. YIV-906 is also effective in other cancers.

With success in the final phase clinical trials, YIV-906 could become the first U.S.-approved botanical cancer drug. Once approved, testing and approval of YIV-906 in other cancers can occur so more patients may benefit.
STAT3 is a major signaling protein that is hyperactivated in over 50% of cancers and results in abnormal cell growth, lack of immune response, metastasis, and other cancer-associated processes.

Drug development to target STAT3 has been challenging for the research community, earning it the label of ‘undruggable.’ Dr. Ronald DePinho and his colleagues used computer-based drug screening of hundreds of thousands of compounds to identify several candidates that inhibit STAT3 protein when tested in various cancer models.

NFRCR’s funding supported the final pre-clinical research of the most promising inhibitor of STAT3. Tvardi Therapeutics has brought the new treatment to Phase I clinical trial to establish its safety and appropriate dose. Patients with many types of advanced cancers have hope it will be a life-saving treatment.

The best chance of a cure for many early-stage cancers is complete, surgical resection. A challenge for surgeons is to determine where cancer ends, and healthy tissue begins. With NFRCR funding since 2005, Dr. Basilion’s molecular imaging research developed light-emitting probes to visualize cancer cells.

Surgeons apply the probe during surgery and a camera rapidly and accurately detects cancer-free margins in tissue. This immediate detection would benefit many patients who would have to return for a second surgery.

Dr. Basilion formed the biotech company, Akrotome Imaging, to translate the molecular imaging probes into the clinics. The probe is being optimized so it may enter Phase I clinical trials to improve cure rates for breast cancer. Light-emitting probes are being developed for colon, prostate, and lung cancer.

Leukemia is a great success story for cancer research — one in which Dr. Civin played an important role. His early work on bone marrow stem cell transplantation was partially responsible for the increased 5-year survival for all types of leukemia over the past 20 years.

Dr. Civin’s current research may hold the key for Acute myeloid leukemia (AML), the deadliest form of leukemia. He recently discovered that artemisinins — a class of drugs to successfully treat malaria — also effectively kill AML cancer cells. Artemisinin also work well in combination with established anti-leukemia drugs.

Drug design software company, Rasio Therapeutics, is modeling the best design to develop the most effective artemisinin. NFRCR’s funds are accelerating the pre-clinical research of the lead artemisinin to give hope to AML patients for an effective treatment to save their life.
NEW INHIBITOR FOR ADVANCED CANCER IN TRIAL

Although childhood cancer is considered rare, it is the leading cause of death by disease among children in the U.S. Nearly one in 389 children will be diagnosed with cancer by 15 years of age.

Unfortunately, available treatments for childhood cancers are scarce due to:
• Poor financial investment for pediatric cancer drug development.
• Limited pediatric-specific drugs were approved in the past 20 years, forcing pediatric doctors to adjust adult cancer treatments for children.

In 2017, NFCR began funding a research program in OncoHeroes, Biosciences, Inc., a small biotech company developing treatments for childhood cancers with the worst outcome. Two fathers with first-hand experience founded the company: Dr. Cesare Spadoni, who lost his daughter to cancer and Mr. Ricardo Garcia, whose son is a cancer survivor.

NFCR’s support launched OncoHeroes Biosciences’ research discovery program to identify a drug to treat the fatal childhood brain cancer, Medulloblastoma.

Our continued investment in OncoHeroes Biosciences secured the drug, volasertib, to treat rhabdomyosarcoma, a deadly soft tissue cancer. In 2020, volasertib received cost-and time-saving designations from the FDA. Clinical trials may begin soon.

NFCR’s translational research is paying off: Other non-profits are also supporting the mission of OncoHeroes Biosciences. Together, we recognize the significant potential of working together to save lives of children with cancer.

CHILDREN’S CANCER – NEW TREATMENTS JUST FOR KIDS

ANTIBODIES TO TARGET CELLS SURROUNDING TUMORS

Dr. Von Hoff, a pioneer and world leading physician-scientist in translational medicine, has personally been involved in over 200 clinical trials. In 1985, his funding from NFCR began and his research led to the first approved treatment for pancreatic cancer, the chemotherapy gemcitabine.

His current focus is to develop monoclonal antibodies for effective treatment of pancreatic and other cancers by targeting the stellate cells, a special type of cells surrounding cancer cells. Stellate cells can change their phenotype, form fibrotic tissue and become a barrier to the attack of immunotherapy.

Monoclonal antibodies targeting stellate cells can break up the fibrotic tissue to expose cancer cells, rendering them sensitive to immunotherapy or other treatments — giving pancreatic cancer and other patients a potential life-saving therapy when they had none.

The specific monoclonal antibody technology is moving into the pre-clinical stage and being further developed by Stromatis Pharma that will bring the antibodies to the stage of clinical development and ultimately to patients.

NFCR funds are facilitating the required pre-clinical studies to translate the lead antibody into clinical development of the antibody drug.
Dr. Susan Band Horwitz received NFCR’s coveted Prize for pioneering the understanding, at the molecular level, of the mechanisms of action and resistance of multiple widely utilized antitumor drugs of natural product origin, particularly Taxol. Deciphering how the drug Taxol works led to a better treatment for more than a million breast, ovarian, lung and pancreatic cancer patients worldwide.

In 1978, Dr. Horwitz’s team published how Taxol — a compound in the bark of the Pacific Yew tree — works to stabilize and halt the machinery for cell division. She knew of Taxol’s potential as a new drug and advocated to the National Cancer Institute to continue clinical trials with the experimental drug. This was extraordinarily timely — as oncologists were dealing with cancer patients developing resistance to available treatments.

Twelve years later, in 1992, the FDA approved Taxol for ovarian cancer, in 1994 for breast cancer and for non-small cell lung cancer in 1999. Taxol is one of the most widely used chemotherapy even with the issue of resistance that occurs.

Dr. Horwitz identified how other natural product anticancer drugs work and resistance occurs. Types of the cell protein that interact with Taxol may have a role in drug resistance and help predict which patients may be likely to respond well.

“I am deeply honored by this award from the National Foundation for Cancer Research and the Szent-Györgyi Prize selection committee. It is a real privilege to be among the winners of this prize, all of whom have greatly advanced cancer research and treatment. And this award is also a testament to all the students, fellows and visiting scientists who contributed to the research conducted in my lab over the years.”

Susan Band Horwitz, Ph.D.
Distinguished Professor Emerita, Albert Einstein College of Medicine, Bronx, NY

In 1978, Dr. Horwitz’s team published how Taxol — a compound in the bark of the Pacific Yew tree — works to stabilize and halt the machinery for cell division. She knew of Taxol’s potential as a new drug and advocated to the National Cancer Institute to continue clinical trials with the experimental drug. This was extraordinarily timely — as oncologists were dealing with cancer patients developing resistance to available treatments.

Twelve years later, in 1992, the FDA approved Taxol for ovarian cancer, in 1994 for breast cancer and for non-small cell lung cancer in 1999. Taxol is one of the most widely used chemotherapy even with the issue of resistance that occurs.

Dr. Horwitz identified how other natural product anticancer drugs work and resistance occurs. Types of the cell protein that interact with Taxol may have a role in drug resistance and help predict which patients may be likely to respond well.

“I am deeply honored by this award from the National Foundation for Cancer Research and the Szent-Györgyi Prize selection committee. It is a real privilege to be among the winners of this prize, all of whom have greatly advanced cancer research and treatment. And this award is also a testament to all the students, fellows and visiting scientists who contributed to the research conducted in my lab over the years.”

Susan Band Horwitz, Ph.D.
Distinguished Professor Emerita, Albert Einstein College of Medicine, Bronx, NY

The Szent-Györgyi Prize for Progress in Cancer Research is named in memory of our co-founder and Nobel Laureate Dr. Albert Szent-Györgyi, this prize honors outstanding scientists who have expanded our understanding of cancer and cancer causation; whose vision has moved cancer research in new directions; and whose discoveries have led to advances in cancer prevention, diagnosis, or treatment.
Salisbury Award-Winning Technology Entering Next Phase To Reach Clinics

Cancer is a cunning enemy. Not only are there many different types of cancer, but cancer cells closely resemble a patient’s healthy cells, making it difficult to develop new treatments specifically targeting cancer cells without the damaging side effects associated with traditional cancer therapies. Each patient’s cancer has a unique set of mutations, although some of these mutations—that is, the so-called ‘shared’ mutations—are found in the cancers of many patients.

Johns Hopkins University researchers, Emily Han-Chung Hsiue, M.D., and Jacqueline Douglass, M.D., Ph.D. student, and their mentors, Drs. Bert Vogelstein and Kenneth Kinzler, at JHU’s Sidney Kimmel Cancer Center, developed a safe, immunotherapeutic approach called ‘MANAbodies’ to target these shared mutations.

For this high-impact, innovative research, they were selected in 2019 as winners of the NFCR Salisbury Award for Entrepreneurial Translational Research. Now, the team is translating their potential treatment to reach clinical stages.

The scientists recently launched a biotechnology company, ManaT Bio, to bring their potentially significant weapon against cancer to patients.

NFCR funding is supporting the pre-clinical research of MANAbodies. Upon completion, the researchers can apply for the Initial New Drug application, a requirement for treating patients in clinical trials.

“There is a huge chasm between a successful laboratory experiment and its translation to a new diagnostic or therapeutic agent,” notes Dr. Vogelstein.

“It is therefore important that young scientists in academia appreciate these challenges and work with industry to make their scientific breakthroughs become breakthroughs for patients,” he continues.

“These interactions are precisely what the Salisbury Award encourages.”

Ultimately, Dr. Hsiue and Ms. Douglass are striving to produce a large panel of MANAbodies, each targeting a different mutant protein that may be present on a patient’s cancer cells.

Patients could be screened to know which mutations are present on their tumor. The corresponding MANAbodies could be used to specifically target and kill their cancer cells.

Supporting entrepreneurs who translate their discoveries into therapies to improve the lives of cancer patients was the vision of NFCR co-founder, Franklin C. Salisbury, Sr. and other Salisbury family members. Join us and contribute to this award and jump-start other new technologies to the next phase to reach patients.
AIM-HI Women’s Venture Competition

Working together with our strategic partner, the AIM-HI Accelerator Fund (AIM-HI), we have launched the inaugural Women’s Venture Competition in 2020, a first-of-its-kind program that provides funding, coaching and networking opportunities to women-led oncology start-ups.

AIM-HI is a not-for-profit organization born out of NFCR in 2019 to help keep research from languishing in labs. An early effort of AIM-HI has been encouraging, identifying and promoting women entrepreneurs to build successful oncology companies. To date, only 2% of women founders in life sciences are funded by traditional venture capital investors. A relatively small seed stage investment could help these women scientists go to the next step they need to attract more significant private investments.

The first Women’s Venture Competition was announced and conducted in 2020 right amid the global pandemic. Applications from 47 start-up companies (6 countries) were screened by the Virtual Selection Committee and 8 semi-finalists advanced to the virtual competition. The Judging Committee chose two finalists to be considered by the Investment Committee for due diligence research.

Privo Technologies (Peabody, Massachusetts), led by its CEO Manijeh Goldberg, Ph.D., has been selected as the winner to receive investment funding totaling $900,000—$300,000 from AIM-HI and matching investments from two supporters of the program. Privo Technologies has developed a novel nano-technology-based system that improves the efficacy of potent anticancer drugs and significantly improves their safety through locoregional delivery. The platform has broad applications for use in anal, colorectal, genitourinary, nasal, and skin cancers.

By taking a venture philanthropy approach, AIM-HI unites the power of donors, entrepreneurial scientists, and business leaders to turbocharge the translation of promising discoveries from bench to bedside. Going forward, we will continue the Women’s Venture Competition every year. Please join forces with NFCR and AIM-HI to provide critically needed seed money to oncology start-ups and help accelerate life-saving oncology innovations!
A Family’s Memorial Tribute for One Gone Too Soon

THE EARLY YEARS
From the young age of nine, Bryan Read became laser-focused on his future career path. When he was assigned a fourth grade science fair project and needed assistance, he asked his mother (Chip) for help. She introduced him to one of her colleagues at Stevenson College near Baltimore, the school where she worked as a teacher and coach. Bryan quickly learned about the career of an athletic trainer and the traits imperative to be successful: good listening skills, a desire to help people, hard work, organizational skills, high standards, dedication to the craft, and the willingness to be a tireless worker. Those attributes would later be used to describe Bryan by all who knew him.

As a three-sport star in high school, Bryan moved on to play men’s lacrosse at Hofstra University, while studying athletic training as a Provost’s Scholar. Bryan earned his Master’s Degree in athletic training from the University of Virginia. When he returned to Maryland, he was hired by Towson Sports Medicine and assigned to serve as an athletic trainer for Dulaney High School in Lutherville.

Bryan immediately excelled in his new role due to his desire to make a difference and help people. He was known for educating coaches and athletes on best practices and latest treatments, and providing excellent care for Dulaney athletes and opponents.

TRAGEDY STRIKES
Bryan’s life was forever changed in February 2018 when his colon burst and he was diagnosed with colon cancer. Initially he refused to let the cancer diagnosis impact his job, and despite having to attend doctor’s visits and chemotherapy sessions, he pushed himself until he no could no longer work.

In 2017, Dulaney High School visited DeMatha Catholic High School for a men’s basketball game. DeMatha supported the National Foundation for Cancers Research’s Play4TheCure program, which encourages youth sports teams to raise awareness and funds for cancer research. When Bryan arrived, the gym was filled with athletes and fans decked out in purple-themed apparel and displaying Play4TheCure signage, which made quite an impression on him.

LEAVING A LEGACY
One year later, Bryan reflected back to that memorable night and wrote his will. He decided he wanted to leave a lasting legacy for cancer research. His parents, Chip and Robert, shared that Bryan constantly asked his doctors: What else can be done? Is there another treatment out there to help me?

Bryan recognized the importance of research and did not want future cancer patients to experience the same uncertainty and fate. Although Bryan fought bravely for 18 months, he sadly lost his battle with colon cancer on August 27, 2019 at the young age of 36. His parents are confident that Bryan would be proud of the impact his substantial contribution has made by accelerating scientific discoveries in cancer research. His legacy lives on through Research for a Cure.

Plan to help future generations by leaving a bequest in your will. To learn more about legacy giving options to advance cancer research, visit NFCR’s website: nfcr.givingplan.net.
Jo, who joined us last year as a monthly supporter is a two-year breast cancer survivor who searched for a way to give back to cancer research until she found NFCR.

“Monthly giving is a very easy option for anyone. If you can incorporate a modest gift into your monthly budget that is automatically withdrawn, you can relax and not worry about it. It is taken care of and planned for throughout the year.”

Jo’s religious faith sustained her through surgery and several rounds of chemotherapy and radiation, while strengthening her belief that Western and Eastern medicine are bringing us closer to finding a cure. Jo recognizes that supporting the brilliant and dedicated researchers by investing in cancer prevention is critically important. From Jo’s perspective, early detection makes all the difference.

Jo chose NFCR among the cancer charity options because she was impressed by NFCR’s excellent Charity Navigator rating and remains confident that her donations will be spent wisely. Jo stated that what makes NFCR unique is, “You calling me to thank me for my gift. I never received this kind of appreciation from other charities. NFCR has the personal touch.”

Robert Johnson’s beloved wife “Genie”, to whom he was married for 55 years, lost her battle with cancer in 2009 at the age of 81. Although she survived her initial bout with breast cancer, her dentist discovered it had metastasized to her right jaw 20 years later during a routine dental visit. Robert still remembers the day the dentist told his wife “you’ve got the big C!”

Despite multiple surgeries and a fighting spirit, Genie sadly passed away with Robert by her side less than two years later. These heart wrenching memories are what make Robert reflect: how can cancer be prevented?

Robert remains hopeful that the answer to that question will be found, and loyally supports NFCR to save others from experiencing a similar loss.
Alvin and Ann Baum were compassionate and caring individuals who wanted to better the lives of those who live and work in the Chicago area. Today, their legacy lives on through the **Alvin H. Baum Family Fund**, an organization that provides grants to charities and needy individuals and collaborates with community partners to promote solutions.

The fund’s Executive Director Erika Cornelisen, who is currently undergoing treatment for stage IV breast cancer, knows that “patients and research are in a marathon. We understand research challenges demand sustained commitment and resources. We realize that philanthropy plays a critical role in advancing science; without philanthropic support for innovative discovery research, the big grants would not happen.”

To ensure the Fund has a 360-degree view of cancer research, the Fund has supported NFCR since 1999. President Joel Friedman and Executive Director Erika Cornelisen (shown left) appreciate NFCR’s ability to break down silos on a national level, promoting a thoughtful continuum where cross-country feedback loops inform research, coordination, and collaboration.
Ways to Get Involved

GIFTS WITH IMMEDIATE IMPACT

Cash gifts can be made by check, credit card, or via a donor advised fund (DAF).

Honor & Memorial Giving: Donate via mail or online to memorialize or pay tribute to a loved one. [Visit nfcr.org/memorial](http://nfcr.org/memorial)

Monthly Giving: Join us as a Champion for a Cure with your monthly sustaining gift. It is quick and simple to sign up. [Visit nfcr.org/monthly](http://nfcr.org/monthly)

Stock gifts (long-term securities, including stocks and bonds) can offer significant tax benefits.

Charitable IRA Rollovers can be made directly from a traditional or Roth IRA to NFCR. Donors must be at least 70 ½ years old. Charitable IRAs may provide tax benefits. Check with your attorney on the benefits of your contribution.

Corporate Matching Gifts: If your company has a matching gift program, you can enhance the impact of your gift. Check with your HR Department for guidelines and gift matching forms.

CREATE A LEGACY

Charitable Gift Annuities are gifts that provide guaranteed income to a donor for life (and/or life of a spouse) with a portion eligible for tax deduction.

Wills or Living Trusts are popular because they are easy to arrange and may be changed at any time you choose. A provision or amendment prepared by your attorney is all that is necessary.

If we can be of assistance to you, confidentially and at no obligation, please do not hesitate to contact Brian Wachtel at bwachtel@nfcr.org or 301-961-9159.
YOUR SUPPORT FOR NFCR IN 2020

Together, we can provide the best path to Research for a CURE by investing heavily in high-risk/high-reward research and collaborations that will yield long-term impacts in patient outcomes. Also invaluable to our health is receiving the most up-to-date education on cancer prevention, diagnostics, and the latest treatments and cancer care.

Our 2020 audited financial statement will be published in this report’s digital version available at www.nfcr.org in the coming weeks.

THE BENEFITS OF DONOR ADVISED FUNDS

A popular way to give a meaningful gift to charity while maximizing tax benefits is through a Donor Advised Fund (DAF). DAF’s allow the donor to receive an immediate tax deduction in the year the contribution is made. Donors can choose when to disburse funds and which charities they would like to support. Since the funds stay invested until the donor provides a distribution, the account can provide an even greater impact to support charitable efforts.

Steve Ban has been supporting NFCR since 2011, originally through the direct mail program, but after learning about the work of NFCR, he created a DAF to support NFCR. Steve believes that a DAF is a wonderful way for donors to support charities since it provides the donor a more thoughtful platform and greater control over how to disperse funds. It also empowers the donor to research causes and plan where they want to make their impact.

“I value the ability of the NFCR to communicate the work and progress of its scientists. I am impressed with the variety and scope of the research, especially related to metastasis, immunology and gene therapy.”

-Steve Ban

PROGRAMS

• Academic Grants
• Translational Grants
• Clinical Programs
• Collaborative Programs
• Scientific Awards
• Early Detection
• Prevention Education
BOARD OF DIRECTORS

Chair of the Board
Judith P. Barnhard, CPA, CFP®, CDFA™
Senior Vice President and Director
Councilor, Buchanan & Mitchell, PC, Maryland

Padmakumar Kaimal, Ph.D.
Vice-President of Technology, Alliance & Business Development, Suven Life Sciences, Indiana

Wendi Picker, Treasurer
President & CEO
Accommodations Unlimited, Virginia

Alfred Slanetz, Ph.D.
President & CEO
Geneius Biotechnology, Inc., Massachusetts

Edward West, Esq.
Principal
Law Offices of Edward S. West, Maryland

SCIENTIFIC ADVISORY BOARD

Webster K. Cavenee, Ph.D.
Director of Strategic Alliances in Central Nervous System Cancers, Ludwig Institute for Cancer Research, San Diego; Distinguished Professor, University of California, San Diego

Frederick W. Alt, Ph.D.
Director, Program in Cellular and Molecular Medicine, Charles A. Janeway; Professor of Pediatrics, Boston Children’s Hospital; Professor of Genetics, Harvard Medical School

Ruggero De Maria, M.D.
President, Alliance Against Cancer; Director, Institute of Pathology, Catholic University, Rome, Italy

Susan Band Horwitz, Ph.D.
Distinguished Professor Emerita, Dept. of Molecular Pharmacology, Albert Einstein College of Medicine

Brian R. Leyland-Jones, MBBS, Ph.D.
Chief Medical Officer, AIM-HI Accelerator Fund

Kanaga Sabapathy, Ph.D.
Head, Division of Cellular and Molecular Research, National Cancer Centre Singapore

Thea Tlsty, Ph.D.
Professor of Pathology & Director, Center for Translational Research in the Molecular Genetics of Cancer, University of California, San Francisco; Director, Program in Cell Cycling and Signaling, UCSF Helen Diller Family Comprehensive Cancer Center

Peter K. Vogt, Ph.D.
Executive Vice President, Chief Science Officer, and Professor
Scripps Research, La Jolla, California

NFCR OFFICERS

Sujuan Ba, Ph.D.
President and Chief Executive Officer

Kwok Leung, Ph.D.
Chief Financial Officer and Secretary

Michael Wang, M.D., Ph.D., MBA
Chief Strategy Officer
2020 Daffodils & Diamonds Annual Luncheon

Dr. Sujuan Ba, Dr. Amos Smith III, and Dr. Susan Band Horwitz

Lively Raffle Drawing - 2020 Daffodils & Diamonds Luncheon

Play4TheCure Girl’s Field Hockey

2020 Daffodils & Diamonds Annual Luncheon

Play4TheCURE Co-ed Basketball Team, Metuchen, NJ

Play4TheCure Men’s Lacrosse
Independent Auditor’s Report
INDEPENDENT AUDITOR’S REPORT

To the Board of Directors,
National Foundation for Cancer Research, Inc. and Affiliates:

We have audited the accompanying consolidated financial statements of National Foundation for Cancer Research, Inc. and Affiliates, which comprise the consolidated statements of financial position as of December 31, 2020 and 2019, and the related consolidated statements of activities, functional expenses and cash flows for the years then ended, and the related notes to the consolidated financial statements.

Management’s Responsibility for the Financial Statements
Management is responsible for the preparation and fair presentation of these consolidated financial statements in accordance with accounting principles generally accepted in the United States of America; this includes the design, implementation, and maintenance of internal control relevant to the preparation and fair presentation of consolidated financial statements that are free from material misstatement, whether due to fraud or error.

Auditor’s Responsibility
Our responsibility is to express an opinion on these consolidated financial statements based on our audits. We conducted our audits in accordance with auditing standards generally accepted in the United States of America. Those standards require that we plan and perform the audits to obtain reasonable assurance about whether the consolidated financial statements are free from material misstatement.

An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the consolidated financial statements. The procedures selected depend on the auditor’s judgment, including the assessment of the risks of material misstatement of the consolidated financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity’s preparation and fair presentation of the consolidated financial statements in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the entity’s internal control. Accordingly, we express no such opinion. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of significant accounting estimates made by management, as well as evaluating the overall presentation of the consolidated financial statements.

We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.

Opinion
In our opinion, the consolidated financial statements referred to above present fairly, in all material respects, the financial position of National Foundation for Cancer Research, Inc. and Affiliates as of December 31, 2020 and 2019, and the changes in their net assets and their cash flows for the years then ended in accordance with accounting principles generally accepted in the United States of America.

June 7, 2021
Consolidated Statements of Financial Position
December 31, 2020 and 2019

ASSETS

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>$2,159,501</td>
<td>$1,564,083</td>
</tr>
<tr>
<td>Accounts receivable</td>
<td>70,919</td>
<td>201,228</td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>180,076</td>
<td>337,322</td>
</tr>
<tr>
<td>Fixed assets, net of accumulated depreciation and amortization</td>
<td>67,232</td>
<td>99,720</td>
</tr>
<tr>
<td>Investments, at fair value</td>
<td>5,041,975</td>
<td>4,349,518</td>
</tr>
<tr>
<td>Amounts held in trusts by others, at fair value</td>
<td>2,819,864</td>
<td>2,626,641</td>
</tr>
<tr>
<td>Investments, at cost</td>
<td>749,999</td>
<td>—</td>
</tr>
<tr>
<td>Right of use asset</td>
<td>1,227,219</td>
<td>1,409,160</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$12,316,785</td>
<td>$10,587,672</td>
</tr>
</tbody>
</table>

LIABILITIES AND NET ASSETS

Liabilities

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts payable</td>
<td>$501,689</td>
<td>$560,095</td>
</tr>
<tr>
<td>Research contracts and grants payable</td>
<td>743,885</td>
<td>577,279</td>
</tr>
<tr>
<td>Accrued compensation and benefits</td>
<td>200,606</td>
<td>193,418</td>
</tr>
<tr>
<td>PPP loan payable</td>
<td>400,000</td>
<td>—</td>
</tr>
<tr>
<td>Lease liability</td>
<td>1,339,955</td>
<td>1,518,243</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>$3,186,135</td>
<td>$2,849,035</td>
</tr>
</tbody>
</table>

Net Assets

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without donor restrictions</td>
<td>$5,217,244</td>
<td>$4,266,636</td>
</tr>
<tr>
<td>With donor restrictions</td>
<td>3,913,406</td>
<td>3,472,001</td>
</tr>
<tr>
<td>Total Net Assets</td>
<td>$9,130,650</td>
<td>$7,738,637</td>
</tr>
</tbody>
</table>

Total Liabilities and Net Assets

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Liabilities and Net Assets</td>
<td>$12,316,785</td>
<td>$10,587,672</td>
</tr>
</tbody>
</table>

For more information, please visit nfcr.org.
Consolidated Statements of Activities
Years Ended December 31, 2020 and 2019

REVENUE AND SUPPORT

<table>
<thead>
<tr>
<th></th>
<th>2020 Without Donor Restrictions</th>
<th>2020 With Donor Restrictions</th>
<th>Total</th>
<th>2019 Without Donor Restrictions</th>
<th>2019 With Donor Restrictions</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public support</td>
<td>$8,290,261</td>
<td>$400,270</td>
<td>$8,690,531</td>
<td>$7,548,673</td>
<td>$704,482</td>
<td>$8,253,155</td>
</tr>
<tr>
<td>Bequests</td>
<td>2,181,714</td>
<td>—</td>
<td>2,181,714</td>
<td>1,622,878</td>
<td>—</td>
<td>1,622,878</td>
</tr>
<tr>
<td>Mailing list rental</td>
<td>195,223</td>
<td>—</td>
<td>195,223</td>
<td>307,460</td>
<td>—</td>
<td>307,460</td>
</tr>
<tr>
<td>Net investment return</td>
<td>806,808</td>
<td>—</td>
<td>806,808</td>
<td>1,270,788</td>
<td>—</td>
<td>1,270,788</td>
</tr>
<tr>
<td>Change in value of split-interest agreements</td>
<td>(10,731)</td>
<td>193,223</td>
<td>182,492</td>
<td>(9,622)</td>
<td>286,711</td>
<td>277,089</td>
</tr>
<tr>
<td>Other revenue</td>
<td>25,975</td>
<td>—</td>
<td>25,975</td>
<td>8,932</td>
<td>—</td>
<td>8,932</td>
</tr>
<tr>
<td>Non-cash research support</td>
<td>103,187</td>
<td>—</td>
<td>103,187</td>
<td>107,405</td>
<td>—</td>
<td>107,405</td>
</tr>
<tr>
<td>Net assets released from restrictions</td>
<td>152,088</td>
<td>(152,088)</td>
<td>—</td>
<td>674,686</td>
<td>(674,686)</td>
<td>—</td>
</tr>
<tr>
<td>Total Revenue and Support</td>
<td>11,744,525</td>
<td>441,405</td>
<td>12,185,930</td>
<td>11,531,200</td>
<td>316,507</td>
<td>11,847,707</td>
</tr>
</tbody>
</table>

EXPENSES

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>5,773,878</td>
<td>8,112,093</td>
</tr>
<tr>
<td>Public education and information</td>
<td>2,503,031</td>
<td>3,165,418</td>
</tr>
<tr>
<td></td>
<td>8,276,909</td>
<td>11,277,511</td>
</tr>
<tr>
<td>Supporting Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundraising</td>
<td>1,734,972</td>
<td>2,287,680</td>
</tr>
<tr>
<td>Management and general</td>
<td>782,036</td>
<td>1,071,335</td>
</tr>
<tr>
<td></td>
<td>2,517,008</td>
<td>3,359,015</td>
</tr>
<tr>
<td>Total Expenses</td>
<td>10,793,917</td>
<td>14,636,526</td>
</tr>
<tr>
<td>Change in Net Assets</td>
<td>950,608</td>
<td>(3,105,326)</td>
</tr>
<tr>
<td></td>
<td>441,405</td>
<td>316,507</td>
</tr>
<tr>
<td>NET ASSETS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NET ASSETS

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of year</td>
<td>4,266,636</td>
<td>7,371,962</td>
</tr>
<tr>
<td>End of year</td>
<td>$5,217,244</td>
<td>$4,266,636</td>
</tr>
</tbody>
</table>

For more information, please visit nfcr.org.